• Title/Summary/Keyword: Methanol conversion

Search Result 168, Processing Time 0.027 seconds

Growth of an Obligatory Methanotroph Methylosinus trichosporium OB3b on Methanol (메탄자화균 Methylosinus trichosporium OB3b의 메탄올 기질에서의 성장)

  • 강문선;황재웅박성훈
    • KSBB Journal
    • /
    • v.10 no.2
    • /
    • pp.212-220
    • /
    • 1995
  • An obligatory type II methanotroph Methylosinus trichosporium OB3b was cultivated on methanol as a sole carbon and energy source. The effects of methanol concentration, pH, temperature, nitrogen source and phosphate concentration on cell growth were investigated and the results were compared with the growth on methane, which had been studied previously. When $(NH_4)_2SO_4$ was used as a nitrogen source, the maximal specific growth rate (${\mu}max$) on methanol was $0.20hr^{-1}$ and the carbon conversion efficiency(CCE) was 43%. In comparison, on methane, ${\mu}max$ and CCE were $0.08hr^{-1}$ and 32%, respectively. Ammonia was found to be a better nitrogen source for methanol-growing cells. Cell yield on nitrogen (YX/N) was the same regardless of nitrogen source as 7.14g dry cells/g N, but the yield on methanol(YX/N) was higher with ammonia(0.8g dry cells/g MeOH) than with nitrate(0.64g dry cells/g MeOH). Optimal pH and temperature were 7.0 and $30^{\circ}C$, respectively. Methanol inhibition on cell growth was observed at above 0.5%(v/v). Inhibition by phosphate was observed at above 60mM, although the inhibition on methanol dehydrogenase activity started at a much lower level of 20mM. Based on the experimental findings, the cellular physiology of M. trichosporium OB3b growing on the two closely-related carbon sources were discussed extensively.

  • PDF

Research Trends on Hydrocarbon-Based Polymer Electrolyte Membranes for Direct Methanol Fuel Cell Applications (직접 메탄올 연료전지용 탄화수소계 고분자 전해질 막 연구개발 동향)

  • Yu-Gyeong Jeong;Dajeong Lee;Kihyun Kim
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.325-343
    • /
    • 2023
  • Direct methanol fuel cells (DMFCs) have been attracting attention as energy conversion devices that can directly supply methanol liquid fuel without a fuel reforming process. The commercial polymer electrolyte membranes (PEMs) currently applied to DMFC are perfluorosulfonic acid ionomer-based PEMs, which exhibit high proton conductivity and physicochemical stability during the operation. However, problems such as high methanol permeability and environmental pollutants generated during decomposition require the development of PEMs for DMFCs using novel ionomers. Recently, studies have been reported to develop PEMs using hydrocarbon-based ionomers that exhibit low fuel permeability and high physicochemical stability. This review introduces the following studies on hydrocarbon-based PEMs for DMFC applications: 1) synthesis of grafting copolymers that exhibit distinct hydrophilic/hydrophobic phase-separated structure to improve both proton conductivity and methanol selectivity, 2) introduction of cross-linked structure during PEM fabrication to reduce the methanol permeability and improve dimensional stability, and 3) incorporation of organic/inorganic composites or reinforcing substrates to develop reinforced composite membranes showing improved PEM performances and durability.

Immobilization of Microbial Cells and Or-ganelles by Entrapment with Urethane Prepolymers

  • Jin, Ing-Nyol
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.04a
    • /
    • pp.115.4-116
    • /
    • 1979
  • Acetone-dried cells of Arthrobacter simplex were entrapped in several preparations of hydrophilic urethane prepolymers and their steroid converting ability was examined. SeVeral solvents, such as methanol and propylone glycol, wereeffective for the conversion of hydrocortisone to prednisolone. The stability of the immobilized cells during storage and on repeated reactions was also examined. Thisconvenient entrapping method was also applicable for the immobilization of cellular organelles. yeast peroxisomes. The entrapped peroxi-somessh owed the activities of alcohol oxidase and catalase.

  • PDF

Biological nitrogen removal of ammonium-rich industrial wastewater by suspended bacterial growth

  • Im, Jun-Taek;Seong, Se-Hyeon;Hwang, Seok-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.399-402
    • /
    • 2002
  • Industrial wastewater with high ammonium concentration was treated in batch biological systems which was a modified Ludzack- Ettinger process. Up to 78% conversion of $NH_4\;^+-N$ to $NO_x\;^--N$ was achieved in batch culture condition. Under anoxic condition with methanol as the carbon source, the denitrifiers decreased $NO_x\;^--N$ concentration from 608 mg/L to 5.6 mg/L in 22 d. As well as anoxic denitrification of $NO_x\;^-$ to $N_2$, dissimilatory nitrate reduction to ammonium also occurred under the condition as respiratory denitrification.

  • PDF

Effect of Enzymatic Deacetylation of T-2 Toxin on the Analysis of T-2 and HT-2 Toxins in Corn and Brown Rice (옥수수 및 현미에서 효소적 탈아세틸화가 T-2와 HT-2 독소 분석에 미치는 영향)

  • Lee, Su-Jin;Ha, Sang-Do;Chun, Hyang-Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.460-466
    • /
    • 2012
  • Through an analysis of T-2 and HT-2 toxins in corn and brown rice, the effect of enzymatic deacetylation of T-2 toxin on HT-2 toxin was investigated. Gas chromatography (GC) with electron capture detection and high-performance liquid chromatography (HPLC) with fluorescence detection were used for quantitative determination. T-2 toxin was converted into HT-2 (84-86%) within 15 min in the presence of crude protein extracts from corn and brown rice. The absence of T-2 conversion was observed for autoclaved samples, in which the enzymes were inactivated. When phosphate buffered saline, followed by methanol, was used as the extraction solvent, recoveries of T-2 toxin spiked at 50 and 200 ${\mu}g/kg$ were from 60 to 87%, whereas those of HT-2 in the autoclaved samples were 0%. In non-autoclaved samples, recoveries of HT-2 were 37-66%, whereas those of T-2 were negligible. However, the conversion of T-2 into HT-2 was not observed when samples were extracted by methanol/water.

Synthesis of Methanol and Formaldehyde by Partial Oxidation of Methane (메탄의 부분산화에 의한 메탄올 및 포름알데히드의 합성)

  • Hahm, Hyun-Sik;Shin, Ki-Seok;Kim, Song-Hyoung;Ahn, Sung-Hwan;Kim, Myung-Soo;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.63-69
    • /
    • 2006
  • Methanol and formaldehyde were produced directly by the partial oxidation of methane. The catalysts used were mixed oxides of late-transition metals, such as Mn, Fe, Co, Ni and Cu. The reaction was carried out at $450^{\circ}C$, 50 bar in a fixed-bed differential reactor. The prepared catalysts were characterized by XRD, TPD and BET apparatus. Of the catalysts, A-Mn0.2-6, which contains 0.2 mole of Mn and calcined at $600^{\circ}C$, showed the best catalytic activity: 3.7% methane conversion, and 30 and 28% methanol and formaldehyde selectivities, respectively. The catalytic activity was changed with the content of Mn and the calcination temperature. Catalytic activity increased with the specific surface areas of the catalysts. With XRD, it was found that the structure of the catalysts are changed with calcination temperature. Through $O_2-TPD$ experiment, it was found that the catalysts showing good catalytic activity showed $O_2$ desorption peak around $800^{\circ}C$.

Decomposition Reaction of Methanol over Ni-Cu/SiO$_2$Catalyst (Ni-Cu/SiO$_2$촉매 상에서의 메탄올 분해 반응)

  • 박지영;문승현;윤형기;박성룡;이상남;정승용
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.65-71
    • /
    • 1996
  • Decomposition reaction of methanol was conducted on Ni-Cu/SiO$_2$catalysts with several variables. Variables used in this study are S.V(Space Velocity), partial pressure of methanol, reaction temperature, and composition rate of Ni-Cu. The range of S.V is 10,000-30,000h$\^$-1/, the temperature range is 150-400$^{\circ}C$ and values of Cu/(Ni+Cu) are 0, 0.25, 0.5, 0.75, and 1. Over Ni/SiO$_2$, and Ni-Cu/SiO$_2$, the conversion rate of decomposition reaction of methanol arrived at 100% with increasing of temperature. At this time the selectivity of CO on Ni/SiO$_2$, was suddenly decreased, but on Ni-Cu/SiO$_2$, it was still sustained highly. The main products of reaction were CO and H$_2$, and by-products were CO$_2$ and CH$_4$mainly.

  • PDF

Development of a Methanol Absorption System for the Removal of $H_2S$, COS, $CO_2$ in Syngas from Biomass Gasifier (바이오매스 가스화 내의 $H_2S$, COS, $CO_2$ 복합 제거를 위한 메탄올 흡수탑 개발)

  • Eom, Won Hyun;Kim, Jae Ho;Lee, See Hoon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.23-27
    • /
    • 2012
  • To make synthetic liquid fuel from biomass such as wood pellet, energy crop and so on, a biomass to liquid (BTL) process by using a biomass gasifier with Fisher-Tropsch (FT) reaction was developed. However $H_2S$, COS and $CO_2$ in syngas from biomass gasifiers resulted in a decrease of the conversion efficiency and the deactivation of the catalyst. To remove acid gases in syngas, a lab-scale methanol absorption tower was developed and the removal characteristics of acid gases were investigated. The methanol absorption tower efficiently removed $H_2S$ and COS with a removal of $CO_2$, so it could be useful process for the BTL process.

FBR CFD Simulation of Steam Methanol Reforming Reaction using Intrinsic Kinetic Data of Copper-impregnated Hydrotalcite Catalyst (구리가 함침된 하이드로탈사이트 촉매의 고유 키네틱 데이터를 이용한 메탄올 수증기 개질반응의 고정층 반응기 CFD 시뮬레이션)

  • Jae-hyeok Lee;Dongil Shin;Ho-Geun Ahn
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.78-85
    • /
    • 2023
  • Fixed-bed reactor Computational Fluid Dynamics (CFD) simulation of methanol steam reforming reaction was performed using the intrinsic kinetic data of the copper-impregnated hydrotalcite catalyst. The activation energy of the copper hydrotalcite catalyst obtained from the previous study results was 97.4 kJ/mol, and the pre-exponential was 5.904 × 1010. Process simulation was performed using the calculated values and showed a similar tendency to the experimental results. And the conversion rate according to the change of the reaction temperature (200 - 450 ℃) and the molar ratio of methanol and water was observed using the intrinsic kinetic data. In addition, mass and heat transfer phenomena analysis of a commercial reactor (I.D. 0.05 - 0.1m, Length 1m) was predicted through axial 2D Symmetry simulation using the power law model of the above kinetic constants.