• Title/Summary/Keyword: Methane steam reforming

Search Result 141, Processing Time 0.028 seconds

Development of Simplified One-dimensional Model for Microchannel Steam/Methane Reformers based on Catalyst Effectiveness Factor Correlations (촉매유효도 상관식에 기반한 마이크로 채널형 수증기/메탄 개질기의 간략화된 1차원 해석모델의 개발)

  • Yun Seok Oh;Dae-Hoon Lee;Jin Hyun Nam
    • New & Renewable Energy
    • /
    • v.19 no.2
    • /
    • pp.1-12
    • /
    • 2023
  • In this study, an efficient one-dimensional model was developed for predicting microchannel steam/methane reformers with thin washcoat catalyst layers with a focus on low-pressure reforming conditions suitable for distributed hydrogen production systems for fuel cell applications. The governing equations for steam/methane mixture gas flowing through the microchannel reformer were derived considering the species conservation with reforming reactions and energy conservation with external convective heat supply. The reaction rates for the developed model were simply determined through the catalyst effectiveness factor correlations instead of performing complicated calculations for the steam/methane reforming process occurring inside the washcoat catalyst layers. The accuracy of the developed was verified by comparing the results obtained herein with those obtained by the detailed computational fluid dynamics calculation for the same microchannel reformer.

Hydrogen Generation Characteristics of SMART Process with Inherent $CO_2/H_2$ Separation (CO$_2/H_2$ 원천분리 SMART 공정의 수소생산특성)

  • Ryu, Ho-Jung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.55-58
    • /
    • 2007
  • To check the feasibility of SMART (Steam Methane Advanced Reforming Technology)system, an experimental investigation was conducted. A fluidized bed reactor of diameter 0.052 m was operated cyclically up to the $10^{th}$ cycle, alternating between reforming and regeneration conditions. FCR-4 catalyst was used as the reforming catalyst and calcined limestone (domestic, from Danyang) was used as the $CO_2$ absorbent. Hydrogen concentration of 98.2% on a dry basis was reached at $650^{\circ}C$ for the first cycle. This value is much higher than $H_2$ concentration of 73.6% in the reformer of conventional SMR (steam methane reforming) system. However, the hydrogen concentration decreased because the $CO_2$ capture capacity decreased as the number of cycles increased.

  • PDF

Methane-Steam Reforming Simulation for a High Temperature Solar Chemical Reactor (고온 태양열 화학 반응기에서의 메탄-수증기 개질반응 시뮬레이션)

  • Ko, Jo-Han;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • Steam reforming of methane in the high temperature solar chemical reactor bas advantage in its heating method. Using concentrated solar energy as a heating source of the reforming reaction can reduce the $CO_2$ emission by 20% compared to hydrocarbon fuel. In this paper, the simulation result of methane-steam reforming on a high temperature solar chemical reactor(SCR) using Fluent 6.3.26 is presented. The high temperature SCR is designed for the Inha Dish-1, a Dish type solar concentrator installed in Songdo city. Basic SCR performance factors are referred to the former researches of the same laboratory. Inside the SCR porous metal is used for a receiver/reactor. The porous metal is carved like a dome shape on the incident side to increase the heat transfer. Also, ring-disc set of baffle is inserted in the porous metal region to increase the path length. Numerical and physical models are also used from the former researches. Methane and steam is mixed with the same mole fraction and injected into the SCR. The simulation is performed for a various inlet mass flow rate of the methane-steam mixture gas. The result shows that the average reactor temperature and the conversion rate change appreciably by the inlet mass flow rate of 0.0005 kg/s.

Simulation of the Hydrogen Conversion Rate Prediction for a Solar Chemical Reactor (태양열 화학반응기의 수소전환효율 예측 시뮬레이션)

  • Ko, Jo-Han;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.294-299
    • /
    • 2008
  • Steam reforming of methane is the most wide spread method for hydrogen production. It has heed studied more than 60 years. methane reforming has advantages in technological maturity and economical production cost. Using a high-temperature solar thermal energy is an advanced technology in Steam reforming process. The synthesis gas, the product of the reforming process, can be applied directly for a combined cycle or separated for a hydrogen. In this paper, hydrogen conversion rate of a solar chemical reactor is calculated using commercial CFD program. 2 models are considered. Model-1 is original model which is designed from the former researches. And model-2 is ring-disk set of baffle is inserted to enhance the performance. The solar chemical reactor has 3 inlet nozzle at the bottom of the side wall near quartz glass and an exit is located at the top. Methane and steam is premixed with 50:50 mole fraction and goes into the inside. Passing through the porous media, the reactants are conversed into hydrogen and carbon monoxide.

  • PDF

A Comparative Study for Steam-Methane Reforming Reaction Analysis Model (수증기-메탄개질반응 해석모델의 비교연구)

  • Choi, Chong-Gun;Chung, Tae-Yong;Nam, Jin-Hyun;Shin, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.497-503
    • /
    • 2008
  • Hydrogen is considered as a fuel of the future for its renewability and environmental compatibility. The reforming of hydrocarbon fuels is currently the most important source of hydrogen, which is expected to continue for next several decades. In this study, extensive CFD simulations on the steam-methane reforming process were conducted to study the performance of four reaction models, i.e. three Arrhenius-type models and a user-defined function (UDF) model. The accuracies of different reaction models for various operating temperatures and steam carbon ratios (SCRs) were evaluated by comparing their CFD results with zero-dimensional intrinsic model of Xu and Froment. It was found that the UDF model generally produced more accurate results than Arrhenius-type models. However, it was also shown that Arrhenius-type models could be made sufficiently accurate by choosing appropriate reaction coefficients, and thus could also be useful for the simulation of the steam-methane reforming process.

A comparative study for steam-methane reforming reaction analysis model (수증기-메탄개질반응 해석모델의 비교연구)

  • Choi, Chong-Gun;Jung, Tae-Yong;Dong-Hoon, Shin;Nam, Jin-Hyn;Kim, Yong-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1997-2002
    • /
    • 2007
  • The reformer is one of the most important chemical processes for the production of high purity hydrogen from fossil fuel. This study compares zero-dimensional model with CFD models for reaction analysis of methane-steam reformer. The zero-dimensional model is an empirical equation, however CFD model uses reactions of Arrhenius type. Because the reaction coefficients of the steam-methane catalytic reforming have not been reported before in the form of Arrhenius type, the present study aims to find the appropriate reaction coefficients. The used CFD code is Fluent 6.2 version. Several models are compared for the case of various operating temperature, mass of catalyst and steam to methane ratio.

  • PDF

Numerical Analysis of Steam-methane Reforming Reaction for Hydrogen Generation using Catalytic Combustion (촉매 연소를 열원으로 한 수증기-메탄개질반응 전산유체해석)

  • Lee, Jeongseop;Lee, Kanghoon;Yu, Sangseok;Ahn, Kookyoung;Kang, Sanggyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • A steam reformer is a chemical reactor to produce high purity hydrogen from fossil fuel. In the steam reformer, since endothermic steam reforming is heated by exothermic combustion of fossil fuel, the heat transfer between two reaction zones dominates conversion of fossil fuel to hydrogen. Steam Reforming is complex chemical reaction, mass and heat transfer due to the exothermic methane/air combustion reaction and the endothermic steam reforming reaction. Typically, a steam reformer employs burner to supply appropriate heat for endothermic steam reforming reaction which reduces system efficiency. In this study, the heat of steam reforming reaction is provided by anode-off gas combustion of stationary fuel cell. This paper presents a optimization of heat transfer effect and average temperature of cross-section using two-dimensional models of a coaxial cylindrical reactor, and analysis three-dimensional models of a coaxial cylindrical steam reformer with chemical reaction. Numerical analysis needs to dominant chemical reaction that are assumed as a Steam Reforming (SR) reaction, a Water-Gas Shift (WGS) reaction, and a Direct Steam Reforming(DSR) reaction. The major parameters of analysis are temperature, fuel conversion and heat flux in the coaxial reactor.

A Study on Reaction Kinetics in Steam Reforming of Natural Gas and Methane over Nickel Catalyst (니켈촉매 상에서 천연가스와 메탄의 수증기 개질 반응에 관한 Kinetics 연구)

  • Seong, Minjun;Lee, Young-Chul;Park, Young-Kwon;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.375-381
    • /
    • 2013
  • Kinetics data were obtained for steam reforming of methane and natural gas over the commercial nickel catalyst. Variables for the steam reforming were the reaction temperature and partial pressure of reactants. Parameters for the Power law rate model and the Langmuir-Hinshelwood model were obtained from the kinetic data. As a result of the reforming reaction using pure methane as a reactant, the reaction rate could be determined by the Power law rate model as well as the Langmuir-Hinshelwood model. In the case of methane in natural gas, however, the Langmuir-Hinshelwood model is much more suitable than the Power law rate model in terms of explaining methane reforming reaction. This behavior can be attributed to the competitive adsorption of methane, ethane, propane and butane in natural gas over the same catalyst sites.

A Numerical Study on the Effectiveness Factor of Ni Catalyst Pellets for Steam-Methane Reforming (수증기-메탄개질용 Ni 촉매의 유용도에 관한 수치적 연구)

  • Choi, Chong-Gun;Nam, Jin-Hyun;Shin, Dong-Hoon;Jung, Tae-Yong;Kim, Young-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.63-66
    • /
    • 2007
  • Reformers which produce hydrogen from natural gas are essential for the operation of residential PEM fuel cells. For this purpose, steam-methane reforming reactions with Ni catalysts is primarily utilized. Commercial Ni catalysts are generally made to have porous pellet shapes in which Ni catalyst particles are uniformly dispersed over Alumina support structures. This study numerically investigates the reduction of catalyst effectiveness due to the mass transport resistances posed by porous structures of spherical catalyst pellets. The multi-component diffusion through porous media and the accurate kinetics of reforming reaction is fully considered in the numerical model. The preliminary results on the variation of the effectiveness factor according to different operation conditions are presented, which is planned to be used to develop correlations in future studies.

  • PDF

Numerical Study of Heat and Mass Transfer Characteristics in Microchannel Steam Methane Reforming Reactor (마이크로채널 메탄 수증기 개질 반응기의 열 및 물질 전달 특성에 관한 수치해석 연구)

  • Jeon, Seung-Won;Lee, Kyu-Jung;Cho, Yeon-Hwa;Moon, Dong-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.885-894
    • /
    • 2012
  • A numerical study of a microchannel steam methane reforming reactor has been performed to understand the characteristics of heat and mass transfer. The integration of Rh-catalyzed steam methane reforming and Pt-catalyzed methane combustion has been simulated. The reaction rates for chemical reactions have been incorporated into the simulation. This study investigated the effect of contact time, flow pattern (parallel or counter), and channel size on the reforming performance and temperature distribution. The parallel and counter flow have opposite temperature distribution, and they show a different type of reaction rate and species mole fraction. As the contact time decreases and channel size increases, mass transfer between the catalyst layer and the flow is limited, and the reforming performance is decreased.