• Title/Summary/Keyword: Methane reduction

Search Result 282, Processing Time 0.029 seconds

The Effects of Methyl Borate, Iodine and Potassium Iodide on the Radiolysis of Methanol by Co-60 Gamma Rays (붕산메틸, 요오드 및 요오드화칼륨이 메탄올의 Co-60 放射線分解에 미치는 영향)

  • Choi, Sang-Up
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.2
    • /
    • pp.106-109
    • /
    • 1965
  • The effects of methyl borate, iodine and potassium iodide on the Co-60 gamma radiolysis of methanol have been reinvestigated at room temperature, utilizing an experimental technique based on gas chromatographic determinations of the gaseous products of the radiolysis. The presence of methyl borate reduces the yield for ethylene glycol to some extent, with slight reductions of the yields for hydrogen and formaldehyde. The presence of iodine causes appreciable reduction of the yields for hydrogen, formaldehyde and ethylene glycol, with a slight reduction of the yield for methane. The presence of potassium iodide reduces the yields for hydrogen and ethylene glycol but increases that for formaldehyde. A mechanism of the radiolysis reaction is discussed, on the basis of the observed data.

  • PDF

Effects of Additives on Greenhouse Gas Emission during Organic Waste Composting: A Review and Data Analysis (첨가제가 유기성 폐기물 퇴비화 과정 중 온실가스 발생에 미치는 영향: 리뷰 및 데이터 분석)

  • Seok-Soon Jeong;Byung-Jun Park;Jung-Hwan Yoon;Sang-Phil Lee;Jae-E. Yang;Hyuck-Soo Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.358-370
    • /
    • 2023
  • Composting has been proposed for the management of organic waste, and the resulting products can be used as soil amendments and fertilizer. However, the emissions of greenhouse gases (GHGs) such as CO2, CH4, and N2O produced in composting are of considerable concern. Hence, various additives have been developed and adopted to control the emissions of GHGs. This review presents the different additives used during composting and summarizes the effects of additives on GHGs during composting. Thirty-four studies were reviewed, and their results showed that the additives can reduce cumulative CO2, CH4, and N2O emission by 10.5%, 39.0%, and 28.6%, respectively, during composting. Especially, physical additives (e.g., biochar and zeolite) have a greater effect on mitigating N2O emissions during composting than do chemical additives (e.g., phosphogypsum and dicyandiamide). In addition, superphosphate had a high CO2 reduction effect, whereas biochar and dicyandiamide had a high N2O reduction effect. This implies that the addition of superphosphate, biochar, and dicyandiamide during composting can contribute to mitigating GHG emissions. Further research is needed to find novel additives that can effectively reduce GHG emissions during composting.

Analysis of Heat Quantity in CNG Direct Injection Bomb(2) : Inhomogeneous Charge (CNG 직접분사식 연소기에서의 열량해석(2) : 비균질급기)

  • 최승환;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.24-31
    • /
    • 2004
  • A cylindrical constant volume combustion bomb is used to investigate the combustion characteristics and to analyzer the heat quantity of inhomogeneous charge methane-air mixture. To analyze the heat quantity, some definitions including the CHR ratio, the UHC ratio and the HL ratio are needed and are calculated. It is shown that the effect of stratification is not significant in case of the overall excess air ratio of 1.1, mainly due to the higher heat loss and lower thermal efficiency compared to those of homogeneous condition. In the case of the overall excess air ratio of 1.4, as the initial charge pressure decreases, the CHR ratio has been decreased while the HL ratio has been increased, Generally, as the initial charge pressure increases, the amount of injection mixture has been decreased and has resulted in lower mean velocity and turbulence intensity for injection mixture. Also, the injected mixture is too rich to result in mixing deficiency in combustion chamber. From these results, it could be possible to acquire the improvement of thermal efficiency and the reduction of heat loss simultaneously through the 2-stage injection in CNG direct injection engine.

Effect of the Degree of Fuel-Air Mixing and Equivalence Ratio on the NOx Emission and Heat Release in a Dump Combustor (모형연소기에서 연료-공기의 혼합정도 및 당량비가 NOx 배출과 열 방출량에 미치는 영향에 대한 연구)

  • Cho, Bong-Kug;Choi, Do-Wook;Kim, Gyu-Bo;Chang, Young-June;Song, Ju-Hun;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.658-665
    • /
    • 2009
  • Lean premixed combustors are used for significant NOx reduction which one of issues in current gas turbine combustor. This study was investigated to estimate the effects of the unmixedness of fuel-air, equivalence ratio on the instability mechanism, NOx emission and combustion oscillation in a lean premixed combustor. The experiments were conducted in a dump combustor at atmospheric pressure conditions using methane as fuel. The swirler angle was $45^{\circ}$, the degrees of fuel-air mixing were 0, 50 and 100 and inlet temperature was 650K. The equivalence ratio was ranging from 0.5 to 0.8. This paper shows that NOx emission was increased when the degree of fuel-air mixing is increased in same equivalence ratio and when equivalence ratio is increased. And the range of the combustion instability was enlarged as a function of increasing of the degree of fuel-air mixing.

The De-CH4 Characteristics of NGOC for CH4 Reduction of a CNG Bus (CNG 버스의 CH4 저감용 NGOC의 de-CH4 특성)

  • Seo, Choong-Kil;Choi, Byung-Chul
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.69-74
    • /
    • 2016
  • Recently, in order to meet the stricter emission regulations, the proportion of after-treatments for vehicle and vessel is increasing gradually. The purpose of this study is to investigate the de-$CH_4$ characteristics of NGOC in front of proposed combined system according to additive catalyst and support ratio. In the case of Pd addition, the de-$CH_4$ performance of 2Pt-2Pd-3MgO/$Al_2O_3$ NGOC was improved by approximately 10 to 20% for the HC components. The de-$CH_4$ performance of 2Pt-2Pd-3Cr-3MgO/$Al_2O_3$ NGOC was higher compared to five kinds of NGOC catalysts, because Cr particle was smaller and dispersion of Pd was increased. The NGOC(Zeolite:$Al_2O_3$(80%:20%)}catalyst according to support ratio, was improved performance at low temperature region on CO and NO conversion rate.

A Study on the Improvement of Sludge Digestion Efficiency by Solubilization Equipment and Gas Purification System (가용화장치 및 가스정제 설비에 의한 슬러지 소화 효율 향상에 관한 연구)

  • Jang, Seong-Ho;Yi, Pyong-In;Lee, Yong-Dea;Kim, Han-Soo;Cho, Han-Jin;Ryu, Jae-Young;Kim, Sang-Woo
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.853-859
    • /
    • 2014
  • The purpose of this study was to improve low digestibility in anaerobic digestion facility of the sewage treatment plant. To perform this research, sludge digestion and digestion gas purification facilities in sewage treatment plant was applied. In the result of this study, it was very effective for sludge reduction from the improvement of digestive efficiency. In addition, it was confirmed that high purity $CH_4$ (methane) was produced. This results can be useful as basic data to improve the low digestibility in anaerobic digestion processes.

Effect of Hydrocarbons on the Promotion of NO-$NO_2$ Conversion in NonThermal Plasma DeNOx Treatment (비열 플라즈마에 의한 NO의 산화에 탄화수소 첨가제가 미치는 영향)

  • Shin, Hyun-Ho;Yoon, Woong-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.33-46
    • /
    • 2000
  • In the present study, a systematic chemical kinetic calculations were made to investigate the augmentation of NO-$NO_2$ conversion due to the addition of various hydrocarbons (methane, ethylene, ethane, propene, propane) in the nonthermal plasma treatment. It is included in the present conclusion that the reaction between hydrocarbon and oxygen radicals induced by electron collision, is believed to be a primarily process for triggering the overall NO oxidation and the eventual NOx reduction. Upon the completion of the initiating step, various radicals (OH, $NO_2$ etc.) successively produced by hydrocarbon decomposition form the primary path of NO-$NO_2$ conversion. When the initiating step is not activated, hydrocarbon consumption rate appeared to be very low, thereby the targeted level of NO conversion can only be achieved by the addition of more input energy. Present study showed ethylene and propene to have higher affinity with 0 radical under all conditions, thereby both of these hydrocarbons show very fast and efficient NO-$NO_2$ oxidation. It was also shown that propene is superior to ethylene in the aspect of NOx removal.

  • PDF

Dilution and Thermal Effects of N2 Addition on Soot Formation in Co-flow Diffusion Flame (동축류 확산화염에서 질소첨가가 Soot발생에 미치는 영향)

  • Eom, Jae-Ho;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.185-191
    • /
    • 2002
  • The influence of N2 addition on soot formation, flame temperature and NOx emissions is investigated experimentally with methane fuel co-flow diffusion flames. The motivation of the present investigation is the differences in NOx reduction reported between fuel-side and oxidizer-side introduction of N2. To determine the influence of dilution alone, fuel was diluted with nitrogen while keeping the adiabatic flame temperature fixed by changing the temperature of the reactants. And to see the thermal effect only, air was supplied at different temperature without N2 addition. N2 addition into fuel side suppressed the soot formation than the case of oxidizer-side, while flame temperature enhanced the soot formation almost linearly. These results reveals the relative influences of the thermal, concentration effects of N2 additives on soot formation In accordance with experimental study, numerical simulation using CHEMKIN code was carried out to compare the temperature results with those acquired by CARS measurement, and we could find that there is good agreement between those results. Emission test revealed that NOx emissions were affected by not only flame temperature but also N2 addition.

  • PDF

Effect of Hydrocarbons on the Promotion of $NO-NO_{2}$ Conversion in NonThermal Plasma DeNOx Treatment (비열 플라즈마에 의한 NO의 산화에 탄화수소 첨가제가 미치는 영향)

  • Shin, Hyun-Ho;Yoon, Woong-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.178-188
    • /
    • 2000
  • In the present study, a systematic chemical kinetic calculations were made to investigate the augmentation of $NO-NO_{2}$ conversion due to the addition of various hydrocarbons (methane, ethylene, ethane, propene, propane) in the nonthermal plasma treatment. It is included in the present conclusion that the reaction between hydrocarbon and oxygen radicals induced by electron collision, is believed to be a primarily process for triggering the overall NO oxidation and the eventual NOx reduction. Upon the completion of the initiating step, various radicals (OH, $HO_{2}$ etc.) successively produced by hydrocarbon decomposition form the primary path of $NO-NO_{2}$ conversion. When the initiating step is not activated, hydrocarbon consumption rate appeared to be very low, thereby the targeted level of NO conversion can only be achieved by the addition of more input energy. Present study showed ethylene and propene to have higher affinity with 0 radical under all conditions, thereby both of these hydrocarbons show very fast and efficient $NO-NO_{2}$ oxidation. It was also shown that propene is superior to ethylene in the aspect of NOx removal.

  • PDF

Synthesis and Properties of Glucamine Derivatives with New Composition (새로운 조성을 갖는 글루카민 유도체의 합성 및 계면성)

  • Park, Seon-Young;Kim, Tae-Young;Jeong, Hwan-Kyeong;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.149-157
    • /
    • 2000
  • The synthesis of N-methyl glucamine was performed in two step reaction. The first step involves the amination between methylamine and glucose in methane. The N-methyl glucamine was obtained by the reduction of using Ni catalyst under the high pressure. The second step was glucamide anionic derivatives synthesis from N-methyl glucamine, maleic anhydride, lauryl alcohol and laurylamine by Schotten Banmann reaction respectively. Their molecular structures of N-methyl glucamine and glucamide (EG-MAS and AC-MAS) were investigated by IR and $^{1}H-NMR$. Basic physical properties and biodegradability of there glucamide anionic surfactant was investigated. The range of cmc values determined by measurements of surface tention was $10^{-5}{\sim}10^{-4}mol/l$ and the surface tension of the aqueous solution revealed in the range $28{\sim}30$ dyne/cm and their biodegradability was very good in the pH $5{\sim}10$.