• Title/Summary/Keyword: Methane production rate

Search Result 301, Processing Time 0.031 seconds

Packed Bed Methane Chemical-Looping Reforming System Modeling for the Application to the Hydrogen Production (수소 생성을 위한 고정상 메탄 매체 순환 개질 시스템 모델링)

  • HA, JONGJU;SONG, SOONHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.453-458
    • /
    • 2017
  • A study on the modeling of the methane Chemical Looping Reforming system was carried out. It is aimed to predict the temperature and concentration behavior of the product through modeling of oxygen carrier fixed bed reactors composed of multiple stacks. In order to design the reaction system, first of all, the flow rate of the hydrogen to be produced was calculated. The flow rate ratio of the oxidation/reduction reactor was calculated considering the heat of reaction between adjacent reactors. Finally, in this paper, kinetic model including empirical coefficients was suggested.

Bio-gas Production from Nemopilema nomurai Using Anaerobic Digestion (혐기성 소화를 이용한 노무라입깃 해파리로부터 바이오 가스 생산)

  • Kim, Ji-Youn;Lee, Sung-Mok;Kim, Jong-Hun;Lee, Jae-Hwa
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.547-552
    • /
    • 2010
  • The recent bloom of a very large jellyfish Nemopilema nomurai has caused a danger to sea fishery and sea bathers. Presently, Nemopilema nomurai is thrown away through a separator system in the sea. The objective of this work was to produce bio-gas from Nemopilema nomurai by using anaerobic digestion. The bio-gas includes the hydrogen or the methane gases. It relates that Nemopilema nomurai is effectually changed into the renewable energy. When the jellyfish biomass was used as an organic carbon source the bio-gases were evolved. The aim of this study was to determine the optimal conditions for hydrogen and methane gases production according to the substrate concentrations of Nemopilema nomurai, optimal culture condition and the sludge-pretreatment without pH control. The optimal culture condition was found to be $35^{\circ}C$ and the heat-treatments of jellyfish was done at $120^{\circ}C$ for 30 min. The production rate of hydrogen and methane gas were found to be 8.8 mL/L/h, 37.2 mL/L/h from 1.5 g of dry Nemopilema nomurai.

Influence of Applied Voltage for Bioelectrochemical Anaerobic Digestion of Sewage Sludge (하수슬러지의 생물전기화학 혐기성소화에 대한 인가전압의 영향)

  • Kim, Dong-Hyun;Song, Young-Chae;Qing, Feng
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.9
    • /
    • pp.542-549
    • /
    • 2015
  • The bioelectrochemical anaerobic digestion for sewage sludge was attempted at different applied voltages ranged from 0.2 V to 0.4 V. At 0.3 V of the applied voltage, pH and VFAs were at 7.32 and 760 mg COD/L, respectively, which were quite stable. The methane production rate was $1.32L\;CH_4/L.d$, and the methane content in biogas was 73.8%, indicating that the performance of the bioelectrochemical anaerobic digestion could be considerably improved by applying a low voltage. At 0.4 V of the applied voltage, however, the contents of the minor VFA components including formic acid and propionic acid were increased. The methane production rate was reduced to $1.24L\;CH_4/L.d$ and the biogas methane content was also reduced to 72.4%. At 0.2 V of the applied voltage, the pH was decreased to 6.3, and VFAs was accumulated to 5,684 mg COD/L. The contents of propionic acid and butyric acid in the VFAs were considerably increased, The performances in terms of the methane production rate and the biogas methane content were deteriorated. The poor performance of the bioelectrochemical reactor at 0.2 V of the applied voltage was ascribed to the thermodynamic potential lack for the driving of the carbon dioxide reduction into methane at cathode.

Indirect Estimation of CH4 from Livestock Feeds through TOCs Evaluation

  • Kim, M.J.;Lee, J.S.;Kumar, S.;Rahman, M.M.;Shin, J.S.;Ra, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.4
    • /
    • pp.496-501
    • /
    • 2012
  • Thirty-five available feeds were fermented in vitro in order to investigate their soluble total organic carbon (TOCs) and methane ($CH_4$) production rate. A fermentation reactor was designed to capture the $CH_4$ gas emitted and to collect liquor from the reactor during in vitro fermentation. The results showed that $CH_4$ production rate greatly varied among feeds with different ingredients. The lowest $CH_4$-producing feeds were corn gluten feed, brewer's grain, and orchard grass among the energy, protein, and forage feed groups, respectively. Significant differences (p<0.05) were found in digestibility, soluble total organic carbon (TOCs), and $CH_4$ emissions among feeds, during 48 h of in vitro fermentation. Digestibility and TOCs was not found to be related due to different fermentation pattern of each but TOCs production was directly proportional to $CH_4$ production (y = 0.0076x, $r^2$ = 0.83). From this in vitro study, TOCs production could be used as an indirect index for estimation of $CH_4$ emission from feed ingredients.

Changes of Methanogenic Pathway with Incubation Temperatures in the Littoral Sediment of Reservoir Paldang, Korea (팔당호 연안대 저질토에서 배양온도에 따른 메탄발생 경로의 변화)

  • Kim, Mi-Kyeong;Cho, Kang-Hyun
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.54-61
    • /
    • 2001
  • Changes in methanogenic pathway at low temperature were studied by incubation experiments of sediment slurries from the littoral zone of Reservoir Paldang. Methane production rates in sediment slurries increased exponentially between $5^{\circ}C$and $45^{\circ}C$, reached a maximum rate of $7.4\;nmol\;{\cdot}\;g^{-1}\;{\cdot}\;h^{-1}$ at $45^{\circ}C$, and then declined to low rate. The shift of incubation temperature from high temperature ($30^{\circ}C$) to lowtemperature ($15^{\circ}C$) resulted in a decrease of methane production rate and of hydrogen accumulation rate, and the transient accumulation of acetate concentration. Chlorofarm inhibited perfectly methanogenesis and resulted in the accumulation of hydrogen and acetate as immediate precursors for metltane formation at both incubation temperatures of $15^{\circ}C$ and $30^{\circ}C$. In terms of equivalent methane which was calculated from the two intermediary metabolites accumulated in absence of methanogenesis, methane production from acetate was accounted for 14% of total methanogenesis at $30^{\circ}C$ and 75% at $15^{\circ}C$, respectively. When the high acetate concentrations above 19 mM were added to sediment slurries, methane production was inhibited at the low temperature ($15^{\circ}C$) . Our results demonstrate that contribution of acetate on methanogenesis increases at low temperature, but this pathway is inhibited by high concentration of acetate. Therefore acetate-utilizing methanogensis appears to be a key reaction at low temperature, and seems to be one of bottlenecks of the low temperature anaerobic degradation of organic matter in littoral sediments of the reservoir.

  • PDF

A Study on the Evaluation of Two-Phase Anaerobic Process for Public Livestock Wastewater Treatment Plant (이상혐기공정의 축산폐수 공공처리시설 적용 가능성에 관한 실험적 연구)

  • Oh, Sung Mo;Kim, Moon Ho;Bae, Yoon Sun;Park, Chul Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.331-339
    • /
    • 2007
  • The purpose of this study was to investigate the biodegradability and performance of organic removal and methane production rate when treating piggery wastewater using a pilot scale two-phase anaerobic system operated up to a volumetric rate of $10m^3/day$. The pilot scale two-phase anaerobic process is consisted of a continuous-flow stirred-tank reactor (CFSTR) for the acidification phase and an Upflow Anaerobic Sludge Blanket reactor (UASB) for the methanogenesis. The acidogenic reactor played key roles in reducing the periodically applied shock-loading and in the acidification of the influent organics. The acidogenic CFSTR was operated at organic loading rates (OLR) between 1.8 and $14.4kgCOD/m^3{\cdot}day$, and the UASB reactor was operated between 0.5 and $5.6kgCOD/m^3{\cdot}day$. A stable maximum biogas production rate was $81m^3/day$ and the methane conversion rate of the organic matter varied from 0.30 to $0.42L\;CH_4/g\;COD_{removed}$(0.40) at hydraulic retention time (HRT) above 3.5days. The methane contents ranged from 73 to 82% during the experimental period. It is known that most of the removed organic matter was converted to methane gas, and the produced biogas might be high quality for its subsequent use.

Anaerobic Degradation of Inhibitory Organics using Fluidized Bed Reactor -Increase of Phenol Loading Rate- (유동층 반응기를 이용한 저해성 유기물의 혐기성 분해 -페놀 부하 증가 중심으로-)

  • 박동일;최석규;김재우
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.57-67
    • /
    • 1998
  • The characteristics of anaerobic degradation of phenol were studied in a fluidized bed reactor using a granular activated carbon as media. Increasing the phenol loading rate with variation of feed concentration was considered as an experimental variable. In the present anaerobic fluidized-bed reactor, the removal efficiency of phenol and COD was maintained about 93-99% and 91-96%, respectively, up to 3.6 kg-phenol/$m^3\cdot d$ of the phenol loading rate, but it was abruptly decreased under 5.0 kg-phenol/$m^3\cdot d$. The volumetric production of biogas per removed phenol was decreased linearly between 0.80-1.27 m$^3$ gas/kg-phenol (0.35-0.56 m$^3$-gas/kg-COD), increasing the phenol loading rate, and the methane content of biogas was 55-60% as similar to that estimated theoretically up to 3.6 kg-phenol/$m^3\cdot d$. But the production rate and methane content of biogas were suddenly decreased at the loading rate of 5.0 kg-phenol/$m^3\cdot d$. Therefore, the anaerobically biodegradable phenol loading rate of the present reactor was 3.6 kg-phenol/$m^3\cdot$ d in order to accomplish over 90% of the removal efficiency.

  • PDF

Application Plan of Sludge Reduction and Improvement of Ananerobic Digestion Rate Using VFAs from Food Waste (증산제를 통한 혐기소화율 개선 및 슬러지 감량 활용방안)

  • Lee, Kawng Hun;Kim, Gil Su;Sun, Beong Keon;Choi, Chan Sup;Cho, Gin Woo;Shin, Jae Hoon;Jeong, Tae Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.3
    • /
    • pp.47-54
    • /
    • 2018
  • This study examined the improvement of anaerobic digestion rate and sludge reduction as a result of the addition of anaerobic digestion with thickened sludge and solution of VFAs obtained from food waste. The methane production rate of the digestion system was 2.21 times higher when anaerobic digestion reactor injected into anaerobes with VFAs from food wastes of 5 percent. Also, The reduction of the amount of concentrated sludge injected will proceed rapidly because of the TCOD concentration in the digestion reactor was more than twice higher. Indirectly it was shown that the increased production system contributed significantly to the methane production efficiency.

A Study on the Kinetics and the Biogas Formation for Organic Wastewater Treatment in Anaerobic Fluidized-Bed Bioreactor and New Model AFPBBR (혐기성 유동층 생물 반응기와 새로운 모델의 AFPBBR에서 유기성폐수 처리시 Biogas 생성과 반응상수에 관한 연구)

  • 김재우;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.2
    • /
    • pp.23-33
    • /
    • 1993
  • The anaerobic digestion of organic synthetic wastewater in anaerobic fluidized bed bioreactor (AFBBR) and anaerobic fluidized packed bed bioreactor (AFPBBR) was studied. This study was conducted to evaluate efficiency and reliability of two reactor. Experiment was performed to find the effect of upflow rate with AFBBR and the height of packed bed with AFPBBR. As a result, this program obtained several conclusion. These are given as follows: As applied the upflow rate increased in AFBBR the produced volume of biogas increased, while the gas production and COD removal decreased at above 0.3 m$^3$/h. When a upflow rate is 0.4 m$^3$/h in AFBBR the volatile suspended solid (VSS) became significantly increased. At an organic loading rate from 0.1 to 0.4 of upflow rate in AFBBR, the methane yield was 1.5584 m$^3$CH$_4$/kgCOD removed, and the observed cell yield coefficient was 0.0933 gVSS/gCOD. In case of AFPBBR, the results showed also that 20 cm of height of packed bed was superior to other in the aspect ot biogas production, the content of methane and COD removal. At 20 cm of height, the profile of microorganisms was stable, while at 30 cm the VSS of effluent became higher than AFBBR. Though COD removal of AFPBBR increased with packed bed, COD removal deteriorate with over packing because the loss of pressure became higher in the reactor. At an organic loading rate from 20 to 40 cm of packed bed in-AFPBBR, the methane yield was 2.5649 m$^3$CH$_4$/kgCOD removed, and the observed cell yield coefficient was 0.0506 gVSS/gCOD. Based upon the results obtained, it is suggested that AFBBR and AFPBBR is the most effective conditions at 0.3 m3/h of upflow rate, the 20cm of packed bed, respectively. The rate constant are summarized as follow:

  • PDF

Microbial Conversion of Organic Wastes for Production of Biogas and Algal Biomass (바이오가스와 균체단백질 생산을 위한 유기질 폐기물의 미생물 전환 연구)

  • 권순찬;김진상
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.438-445
    • /
    • 1993
  • Raw cow manure was treated by a 4-step integrated system with phase separation anaerobic digestion and algal culture. When the first methane fermentation was performed by the effluent from the acid fermenter with retention time of 4 days, the elrerage blogas production rate was 977m1/1 culture/day Gas productivity compared to conventional single-stage anaerobic digestion increased up to 31.4%. As the 2nd methane fermenter was fed by the effluent from the first methane fermenter with 4 days of retention time, average amount of 428m1/1 culture/day of biogas was produced. The reduction rate of COD in the effluent from the acid fermenter, the 1st and the 2nd methane fermenter were 71.8%, 42.6% and 24.0% respectively. Finally, we examined algal treatment process for the effluent from the 2nd methane fermenter. A semi-continuous culture of Chlorella sp. PSH3 was conducted by feeding the effluent with retention time of 10days. In this process, the production rate of algal biomass and COD reduction rate were averaged 1.8g/1 culture/day(2.8$\times$106 cells/ml) and 73%, respectively. Through the 4-setp treatments, the total chemical oxygen demand was reduced from 51,300ppm to 85ppm. Therefore, the reduction rate of total chemical oxygen demand reached about 99.8%. The results indicate that the integrated system could be applicable for treatment of organic wastes, concurrently producing biogas and algal biomass.

  • PDF