• 제목/요약/키워드: Methane gas production

검색결과 457건 처리시간 0.032초

메탄 하이드레이트의 생산 기술 현황과 환경에 미치는 영향 (Methane hydrate : The state of the art of Production technologies and environmental issues)

  • 장승룡
    • 한국석유지질학회지
    • /
    • 제7권1_2
    • /
    • pp.13-18
    • /
    • 1999
  • 메탄 하이드레이트는 메탄가스를 포함하고 있는 얼음 같은 고체 상태 물질이며 물분자들이 가스 분자들을 둘러싸고 있는 clathrate 혼합물이다. 낮은 온도와 높은 압력의 환경에서 탄화수소 가스는 하이드레이트를 형성하며 이러한 형성 조건으로 인하여 극지방의 육성 퇴적층과 약 300 m 이상 수심이 깊은 해저 퇴적층 내에서 발견된다. 메탄 하이드레이트의 매장량은 정확히 예측하기는 어려우나 그 양은 엄청날 것으로 예상되며, 이와 같은 이유로 향후 천연가스 공급원으로서 주된 역할을 할 것으로 기대하고 있다. 그러나 그 생산 기술은 아직도 취약하며, 또한 메탄 하이드레이트의 해리에 의하여 발생하는 대기 온난화 문제도 심각한 환경 문제로서 대두되고 있다. 이와 같은 관점에서 본 논문에서는 메탄 하이드레이트 생산 기술 현황과 환경에 미치는 영향 등을 분석하여 메탄 하이드레이트의 실체와 연구 방향을 밝히고자 한다

  • PDF

보조가스가 첨가된 메탄 하이드레이트 상평형 조건에 대한 연구 (Equilibrium Conditions of Methane Hydrate added Help Gases)

  • 김남진;임상훈;천원기
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.51-58
    • /
    • 2007
  • Gas hydrate is a special kind of inclusion compound that can be formed by capturing gas molecules to water lattice in high pressure and low temperature conditions. When referred to standard conditions, $1m^3$ solid hydrates contain up to $172Nm^3$ of methane gas, depending on the pressure and temperature of production. Such large volumes make natural gas hydrates can be used to store and transport natural gas. In this study, three-phase equilibrium conditions for forming methane hydrate were theoretically obtained in aqueous single electrolyte solution containing 3wt% NaCl. The results show that the predictions match the previous experimental values very well, and it was found that NaCl acts as an inhibitor.

메탄하이드레이트 개발동향 (The Status of Methane Hydrate Development)

  • 김영인
    • 자원환경지질
    • /
    • 제46권1호
    • /
    • pp.71-84
    • /
    • 2013
  • 대부분의 GH는 전세계 해양퇴적물에서 대부분 산출되며 매장량은 $10^{13}{\sim}20{\times}10^{15}m^3$로 현재 세계 에너지 사용량을 기준으로 근 1,000년에 해당하는 양이다. MH는 전통석유가스자원를 대체할 미래 천연가스자원으로써의 잠재력이 있기 때문에 감압법, 화학첨가제 주입법, 열자극법, $CO_2$-메탄 치환법 등 채굴기술개발이 필요하다. 우리나라의 경우 2014년까지는 시험생산이 가능할 것으로 기대되고 있다. 이를 위하여 생산방법을 비교하고 GH의 분해에 따르는 반응이 복잡하기 때문에 이러한 현상을 예측하는 기술과 효과적이고 환경 친화적인 가스를 생산할 수 있는 기술을 개발하는 것이다.

플럭스챔버에 의한 매립지표면 메탄의 배출량 측정과 분석 (Surface Flux Measurements of Methane from Lamdfills by Closed Chamber Technique and its Validation)

  • 김득수;장영기;전의찬
    • 한국대기환경학회지
    • /
    • 제16권5호
    • /
    • pp.499-509
    • /
    • 2000
  • Next to carbon dioxide, methane is the second largest contributor to global warming among anthropogenic greenhouse gases. Methane is emitted into the atmosphere from both natural and anthropogenic sources. Natural sources include wetlands, termites, wildries, ocean and freshwater. Anthropogenic sources include landfill, natural gas and oil production, and agriculture. These manmade sources account for about 70% of total global methane emissions; and among these, landfill accounts for approximately 10% of total manmade emissions. Solid waste landfills produce methane as bacteria decompose organic wastes under anaerobic conditions. Methane accounts for approximately 45 to 50 percent of landfill gas, while carbon dioxide and small quantities of other gases comprise the remaining to 50 to 55 percent. Using the closed enclosure technique, surface emission fluxes of methane from the selected landfill sites were measured. These data were used to estimate national methane emission rate from domestic landfills. During the three different periods, flux experiments were conducted at the sites from June 30 through December 26, 1999. The chamber technique employed for these experiments was validated in situ. Samples were collected directly by on-site flux chamber and analyzed for the variation of methane concentration by gas chromatography equipped with FID. Surface emission rates of methane were found out to vary with space and time. Significant seasonal variation was observed during the experimental period. Methane emission rates were estimated to be 64.5$\pm$54.5mgCH$_4$/$m^2$/hr from Kimpo landifll site. 357.4$\pm$68.9mgCH$_4$/$m^2$/hr and 8.1$\pm$12.4mgCH$_4$/$m^2$/hr at KwanJu(managed and unmanaged), 472.7$\pm$1056mgCH$_4$/$m^2$/hr at JonJu, and 482.4$\pm$1140 mgCH$_4$/$m^2$/hr at KunSan. These measurement data were used for the extrapolation of national methane emission rate based on 1997 national solid waste data. The results were compared to those derived by theoretical first decay model suggested by IPCC guidelines.

  • PDF

Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants

  • Haque, Md Najmul
    • Journal of Animal Science and Technology
    • /
    • 제60권6호
    • /
    • pp.15.1-15.10
    • /
    • 2018
  • Methane emission from the enteric fermentation of ruminant livestock is a main source of greenhouse gas (GHG) emission and a major concern for global warming. Methane emission is also associated with dietary energy lose; hence, reduce feed efficiency. Due to the negative environmental impacts, methane mitigation has come forward in last few decades. To date numerous efforts were made in order to reduce methane emission from ruminants. No table mitigation approaches are rumen manipulation, alteration of rumen fermentation, modification of rumen microbial biodiversity by different means and rarely by animal manipulations. However, a comprehensive exploration for a sustainable methane mitigation approach is still lacking. Dietary modification is directly linked to changes in the rumen fermentation pattern and types of end products. Studies showed that changing fermentation pattern is one of the most effective ways of methane abatement. Desirable dietary changes provide two fold benefits i.e. improve production and reduce GHG emissions. Therefore, the aim of this review is to discuss biology of methane emission from ruminants and its mitigation through dietary manipulation.

Fermentation quality and in vitro methane production of sorghum silage prepared with cellulase and lactic acid bacteria

  • Khota, Waroon;Pholsen, Suradej;Higgs, David;Cai, Yimin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권11호
    • /
    • pp.1568-1574
    • /
    • 2017
  • Objective: The effects of lactic acid bacteria (LAB) and cellulase enzyme on fermentation quality, microorganism population, chemical composition and in vitro gas production of sorghum silages were studied. Methods: Commercial inoculant Lactobacillus plantarum Chikuso 1 (CH), local selected strain Lactobacillus casei (L. casei) TH 14 and Acremonium cellulase (AC) were used as additives in sorghum silage preparation. Results: Prior to ensiling Sorghum contained $10^4LAB$ and $10^6cfu/g$ fresh matter coliform bacteria. The chemical compositions of sorghum was 26.6% dry matter (DM), 5.2% crude protein (CP), and 69.7% DM for neutral detergent fiber. At 30 days of fermentation after ensiling, the LAB counts increased to a dominant population; the coliform bacteria and molds decreased to below detectable level. All sorghum silages were good quality with a low pH (<3.5) and high lactic acid content (>66.9 g/kg DM). When silage was inoculated with TH14, the pH value was significantly (p<0.05) lower and the CP content significantly (p<0.05) higher compared to control, CH and AC-treatments. The ratio of in vitro methane production to total gas production and DM in TH 14 and TH 14+AC treatments were significantly (p<0.05) reduced compared with other treatments while in vitro dry matter digestibility and gas production did not differ among treatments. Conclusion: The results confirmed that L. casei TH14 could improve sorghum silage fermentation, inhibit protein degradation and decrease methane production.

Pretreatments of Broussonetia papyrifera: in vitro assessment on gas and methane production, fermentation characteristic, and methanogenic archaea profile

  • Dong, Lifeng;Gao, Yanhua;Jing, Xuelan;Guo, Huiping;Zhang, Hongsen;Lai, Qi;Diao, Qiyu
    • Animal Bioscience
    • /
    • 제35권9호
    • /
    • pp.1367-1378
    • /
    • 2022
  • Objective: The present study was conducted to examine the gas production, fermentation characteristics, nutrient degradation, and methanogenic community composition of a rumen fluid culture with Broussonetia papyrifera (B. papyrifera) subjected to ensiling or steam explosion (SE) pretreatment. Methods: Fresh B. papyrifera was collected and pretreated by ensiling or SE, which was then fermented with ruminal fluids as ensiled B. papyrifera group, steam-exploded B. papyrifera group, and untreated B. papyrifera group. The gas and methane production, fermentation characteristics, nutrient degradation, and methanogenic community were determined during the fermentation. Results: Cumulative methane production was significantly improved with SE pretreatment compared with ensiled or untreated biomass accompanied with more volatile fatty acids production. After 72 h incubation, SE and ensiling pretreatments decreased the acid detergent fiber contents by 39.4% and 22.9%, and neutral detergent fiber contents by 10.6% and 47.2%, respectively. Changes of methanogenic diversity and abundance of methanogenic archaea corresponded to the variations in fermentation pattern and methane production. Conclusion: Compared with ensiling pretreatment, SE can be a promising technique for the efficient utilization of B. papyrifera, which would contribute to sustainable livestock production systems.

Methylosinus trichosporium을 이용한 메탄으로부터 메탄올 생성에 관한 연구 (Studies on Methanol Production from Methane by Methylosinus trichosporium)

  • 강환구
    • KSBB Journal
    • /
    • 제11권6호
    • /
    • pp.642-648
    • /
    • 1996
  • 본 연구에서는 에탄 자화균인 Methylosinus trichosporim OB3b를 이용하여 메탄으로부터 에탄올 생성에 관한 실험을 수행하였다. 에탄으로부터 에탄올을 생성하기 위해서는 메탄 산화과정 중 두번 째 효소인 methanol dehydrogenase 효소의 활성을 부분 저해해야 하므로 이를 위해 EDTA를 사용한 결과 EDTA가 methanol dehydrogenase의 저해제 임을 확인하였고 배지에 6mM EDTA를 첨가하였을 때 전혀 첨가하지 않았을 때와 비교하여 메탄올 생 성이 약 5배 정도 증가되어 lOmmole/L의 에탄율을 얻을 수 있었다. 또한 Cu의 존재유무가 에단올 생성 에 미치는 영향을 실험한 결과 ImM Cu 존재시 $5\mu\textrm{M}$ Cu 존재하에 비해 메탄올 생성이 약 2.5배 증가되어 약 11mmole/L의 메탄올을 얻을 수 있었는데 이는 Cu 존재가 입자상(particulate) MMO의 생성을 촉 진시키며 생성된 이 세포 단위중량당 MMO 활성이 높은 pMMO가 에탄으로부터 에탄올의 생성을 촉진 시키는 것으로 생각된다. 그리고 온도가 에탄올 생 성에 미치는 영향을 실험한 결과 온도가 3TC에서 $30^{\circ}C , 25^{\circ}C$ 로 낮아점에 따라 생성 메단올 농도가 증 가하여 15.5mmole/L에 이르렀고 메탄 소비속도도 증가됨을 알 수 있였다. 또한 메단과 산소의 구생성 분비가 에탄올 생성에 미치는 영향을 실험한 결과 산소대비 에탄 농도가 증가할수록 생성 에탄올의 농 도 및 세포농도가 증가됨을 알 수 였다. 그리하여 50% 메탄, 50% 산소 존재하에 비해 70% 에탄, 30% 산소 경우에는 약 50% 증가된 15.3 mmole/L 농도의 머l단올을 얻을 수가 있였으며 세포농도도 많이 증가됨을 알 수 있다.

  • PDF

다공성 매질 내에서 메탄 하이드레이트의 분해에 의한 2 상 유동 해석 (Simulation of Two Phase Flow in Porous Media After Disso of Methane Hydrates)

  • 장동근;김남진;이재용;김종보
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.241-246
    • /
    • 2000
  • Gas hydrates are solid solutions when water molecules are linked through hydrogen bondin create host lattice cavities that can enclose a large variety of guest gas molecules. The natural hydrate crystal may exist at low temperature above the normal freezing point of water and pressure greater than about 30 bars. A lot of quantities of natural gas hydrates exists in the ear many production schemes are being studied. In the present investigation, depressurization method considered to predict the production of gas and the simulation of the two phase flow - gas and - in porous media is being carried out. The simulation show about the fluid flow in porous have a variety of applications in industry. Results provide the appearance of gas and water prod the pressure profile, the saturation of gas/ water/ hydrates profiles and the location of the pl front.

  • PDF

Methane carbon dioxide reforming for hydrogen production in a compact reformer - a modeling study

  • Ni, Meng
    • Advances in Energy Research
    • /
    • 제1권1호
    • /
    • pp.53-78
    • /
    • 2013
  • Methane carbon dioxide reforming (MCDR) is a promising way of utilizing greenhouse gas for hydrogen-rich fuel production. Compared with other types of reactors, Compact Reformers (CRs) are efficient for fuel processing. In a CR, a thin solid plate is placed between two porous catalyst layers to enable efficient heat transfer between the two catalyst layers. In this study, the physical and chemical processes of MCDR in a CR are studied numerically with a 2D numerical model. The model considers the multi-component gas transport and heat transfer in the fuel channel and the porous catalyst layer, and the MCDR reaction kinetics in the catalyst layer. The finite volume method (FVM) is used for discretizing the governing equations. The SIMPLEC algorithm is used to couple the pressure and the velocity. Parametrical simulations are conducted to analyze in detail the effects of various operating/structural parameters on the fuel processing behavior.