• Title/Summary/Keyword: Methane flux

Search Result 81, Processing Time 0.034 seconds

Evaluation of Methane Oxidation Potentials of Alpine Soils Having Different Forestation Structure in Gajwa mountain (경상남도 가좌산의 소나무, 참나무, 밤나무 우점 산림토양 별 메탄 산화능 평가)

  • Park, Yong Kwon;Kim, Sang Yoon;Gwon, Hyo Suk;Kim, Pil Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.306-313
    • /
    • 2014
  • BACKGROUND: Forest soils contain microbes capable of consuming atmospheric methane ($CH_4$), an amount matching the annual increase in $CH_4$ concentration in the atmosphere. However, the effect of plant residue production by different forest structure on $CH_4$ oxidation is not studied in Korea. The objective of this study was to evaluate the effect of Korean alpine soils having different forestation structure on $CH_4$ uptake rates. METHODS AND RESULTS: the $CH_4$ flux was measured at three sites dominated with pine, chestnut and oak trees in southern Korea. The $CH_4$ uptake potentials were evaluated by a closed chamber method for a year. The $CH_4$ uptake rate was the highest in the pine tree soil ($1.05mg/m^2/day$) and then followed by oak ($0.930mg/m^2/day$) and chestnut trees ($0.497mg/m^2/day$). The $CH_4$ uptake rates were highly correlated to soil organic matter and moisture contents, and total microbial and methanotrophs activities. Different with the general concent, there was no any correlation between $CH_4$ oxidation rates, and soil temperature and labile carbon concentrations, irrespective with tree species. CONCLUSION: Conclusively, the methane oxidation rate was correlated in positive manner with organic matter, abundance of methanotrophs. Methane oxidation was different among tree species. This results could be used to estimate methane oxidation rate in forest of Korea after complementing information about statistical data and methane oxidation of other site.

Estimation of Methane Emission by Water Management and Rice Straw Application in Paddy Soil in Korea (한국 논토양(土壤)에서 물관리(管理)와 볏짚 시용(施用)에 따른 메탄 배출량(排出量)의 추정(推定))

  • Shin, Yong-Kwang;Yun, Seong-Ho;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.3
    • /
    • pp.261-265
    • /
    • 1995
  • Methane flux from a rice paddy in Korea was measured to study the effects of water management and rice straw application on methane emission under different water managements ; flooding and intermittent irrigation, and with or without rice straw application. Methane emission ranged from 0.066 to $0.455g\;CH_4m^{-2}d^{-1}$. Intermittent irrigation has shown a mitigation effect of methane emission, 70% in NPK plot and 47% in NPK plus rice straw plot, relative to that of flooding. Methane emission from Korean paddy was estimated as 399,590tons per year assuming that paddy fields were managed under intermittent irrigation and rice straw application. This estimation was lower than that of OECD's by 56%, Neue's by 51%, and Matthew's by 62%, while higher than that of Taylor's by 118%.

  • PDF

Evaluation of Methane Emissions with Water Regime before the Cultivation Period in Paddy Fields

  • Park, Jun-Hong;Park, Sang-Jo;Kim, Jong-Su;Seo, Dong-Hwan;Park, So-Deuk;Kim, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.271-277
    • /
    • 2015
  • Anaerobic decomposition of organic material in flooded rice fields produces methane, which escapes to the atmosphere primarily by transport through the rice plants. The annual amount of $CH_4$ emitted from a given area of rice is a function of the number and duration of crops grown, water regimes before and during cultivation period, and organic and inorganic soil amendments. Soil type, temperature, and rice cultivar also affect $CH_4$ emissions. The field experiment was conducted for three years to develop methane emission factor for water regime before the cultivation period from the rice fields. It was treated with three different water regimes prior to rice cultivation, namely: non-flooded pre-season < 180 days, non-flooded pre-season > 180 days, flooded per-season in which the minimum flooding interval is set to 30 days. Methane emission increased with days after transplanting and soil redox potential (Eh) decreased rapidly after flooding during the rice cultivation. The average methane emission fluxes were $5.47kg\;CH_4\;ha^{-1}day^{-1}$in flooded pre-season > 30 days, 5.04 in non-flooded pre-season < 180 days and 4.62 in non-flooded pre-season > 180. Methane emission flux was highly correlated with soil temperature and soil Eh. Rice yields showed no difference among treatments with water regime before the cultivation period.

The Dipole Moment Derivatives of Methane

  • Kim, Kwan;Park, Cheol-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.380-384
    • /
    • 1986
  • The infrared intensities of $CH_{4}$ and $CD_{4}$ are analyzed. The experimental dipole moment derivatives thus obtained are compared with corresponding values from the molecular orbital calculations. The theoretical results are analyzed for the charge-charge flux-overlap(CCFO) electronic contributions to the dipole derivatives.

Methane Emission Patterns from Stored Liquid Swine Manure

  • Park, Kyu-Hyun;Wagner-Riddle, Claudia
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.9
    • /
    • pp.1229-1235
    • /
    • 2010
  • With the increase of human activities since the Industrial Revolution, atmospheric greenhouse gas (GHG) concentration has increased, which is believed the cause of climate change. Methane ($CH_4$) fluxes were measured at two commercial swine barns (Jarvis and Guelph) with a four tower micrometeorological mass balance method. Two and three separate measurements were conducted at Jarvis and at Guelph, respectively. In the Jarvis experiments from May to July, mean $CH_4$ flux ($490.4{\mu}g/m^2/s$) during daytime was lower than that during nighttime ($678.0{\mu}g/m^2/s$) (p<0.05), which would be caused by break of slurry temperature stratification. In the Guelph experiment from January to April, mean $CH_4$ flux ($62.9{\mu}g/m^2/s$) during daytime was higher than that during nighttime ($39.0{\mu}g/m^2/s$) (p<0.05), which would be generated by high slurry temperature at 3 cm depth after April 6. Slurry temperature stratification in the Guelph experiment would happen from January to March.

Analysis of Flow Character and Gas Measurement from Final Cover Soil of sanitary Landfill (쓰레기 매립지 최종 복토층에서 가스 측정방법과 유출특성 해석)

  • 이해승
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.3
    • /
    • pp.75-86
    • /
    • 1998
  • This paper is going to show the way we can sample the landfill gases flowing out to the air through final cover soil by using an closed chamber in the field for a short time. In addition, we came to the following results through the application of model with actual measurements. 1) Analyzing changes of concentration in the chamber(H: 10-30cm) every 5 minutes, considering analysis time of gas chromatograph for an half hour. 2) The proportion of $CE_4$to $CO_2$changes rapidly near the surface of final cover soil by the influence of methane oxidation reaction. 3) When flux of landfill gas is F=$10^{-5}$mol/$\textrm{m}^2$.s), methane oxidation reaction has an influence on composition of gases, however there is little influence when F=$10^{-6}$ mol/($\textrm{m}^2$.s).

  • PDF

Effect of By-Product Gypsum Fertilizer on Methane Gas Emissions and Rice Productivity in Paddy Field

  • Park, Jun-Hong;Sonn, Yeon-Kyu;Kong, Myung-Suk;Zhang, Yong-Seon;Park, Sang-Jo;Won, Jong-Gun;Lee, Suk-Hee;Seo, Dong-Hwan;Park, So-Deuk;Kim, Jang-Eok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.30-35
    • /
    • 2016
  • Rice cultivation in paddy field affects the global balance of methane ($CH_4$) as a key greenhouse gas. To evaluate a potential use of by-product gypsum fertilizer (BGF) in reducing $CH_4$ emission from paddy soil, $CH_4$ fluxes from a paddy soil applied with BGF different levels (0, 2, 4 and $8Mg\;ha^{-1}$) were investigated by closed-chamber method during rice cultivation period. $CH_4$ flux significantly decreased (p<0.05) with increasing level of BGF application. $8Mg\;ha^{-1}$ of BGF addition in soil reduced $CH_4$ flux by 60.6% compared to control. Decreased soil redox potential (Eh) resulted in increasing $CH_4$ emission through a $CO_2$ reduction reaction. The concentrations of dissolved calcium (Ca) and sulfate ion (${SO_4}^{2-}$) in soil pore water were significantly increased as the application rate of BGF increased and showed negatively correlations with $CH_4$ flux. Decreased $CH_4$ flux with BGF application implied that ${SO_4}^{2-}$ ion led to decreases in electron availability for methanogen and precipitation reaction of Ca ion with inorganic carbon including carbonate and bicarbonate as a source of $CH_4$ formation under anoxic condition. BGF application also increased rice grain yield by 16% at $8Mg\;ha^{-1}$ of BGF addition. Therefore, our results suggest that BGF application can be a good soil management practice to reduce $CH_4$ emission from paddy soil and to increase rice yield.

Treatment of Garbage Leachate with Two-phase Anaerobic Digestion Coupled with Ultra Filtration (막결합형 2상 혐기성 소화 공정을 이용한 음식물 탈리액 처리)

  • Lee, Eun-Young;Kim, Hyung-Kuk;Giang, Luu Thi Thuy;Bae, Jae-Ho;Bae, Young-Shin;Won, Jong-Choul;Lee, Jae-Hoon;Park, Seung-Kyun;Cho, Yong-Wan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.997-1006
    • /
    • 2009
  • Organic removal efficiency and methane production rate, a feasibility of power generation from biogas, and the optimum conditions for membrane operation were evaluated for the pilot scale (5 tons/day) two-phase anaerobic digestion coupled with ultra filtration (TPADUF) system fed with garbage leachate. The TPADUF system is consisted of a thermophilic acidogenic reactor, a mesophilic methanogenic reactor, and an UF membrane. When garbage leachate with 150 g/L of TCOD was fed to the TPADUF up to organic loading rate (OLR) of 11.1 g COD/L/d, the effluent TCOD was lower than 6 g/L and the average removal efficiencies of TCOD and SCOD were higher than 95%. The methane composition of the gas was 65%, and the methane yield was 39 $m^3/m^3$ garbage leachatefed, 260 $m^3$/tons $COD_{added}$, or 270 $m^3$/tons $COD_{removed}$, even there was some gas leak. The power production per consumed gas was 0.96 kWh/$m^3$ gas or 1.49 kWh/$m^3$ methane. This lower power production efficiency mainly due to the small capacity of gas engine (15 kW class). The membrane was operated at the average flux of 10 L/$m^2$/hr. When the flux decreased, washing with water and chemical (NaOCl) was conducted to restore the flux. In the TPADUF system, optimum pH could be maintained without alkali addition by recycling the membrane concentrate or mixed liquor of the methanogenic digester to the acidogenic reactor. Also, partial production of methane in the acidogenic reactor had a positive effect on lowering the OLR of the methanogenic reactor.

The Flow Behavior Characteristics of Methane with Phase Change at Low Heat Flux (저열유속에서 상변화를 수반하는 메탄의 유동거동특성)

  • Choi, Bu-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.96-103
    • /
    • 2014
  • A liquefied natural gas(LNG) in cryogenic liquid is converted back into gaseous form for distribution to residential and industrial consumers. In this re-gasification process, LNG supplies a plenty of cold thermal energy about $83.7{\times}10^4kJ/kg$. The LNG cold thermal energy is utilized for the re-liquefaction process of cryogenic fluids such as Nitrogen, Hydrogen and Helium, and ice manufacturing process and air-conditioning system in some advanced countries. Therefore, it is also necessary to establish the recovery systems of the LNG cold thermal energy around Incheon, Pyungtaek and Tongyung LNG import terminals in our country. Methane is used as working fluid in this paper, which is the major component of LNG over 85 % by volume, in order to investigate the flow behavior characteristics of LNG with phase change at low heat flux. This paper presents the effects of pipe diameters, pipe inclinations and saturation pressures on the flow boundaries of methane flowing in a cryogenic heat exchanger tube, together with those of nitrogen, propane, R11 and R134a. The outcomes obtained from this theoretical researches are also compared with previous experimental data. It was also found that the effect of pipe inclination on the methane flow boundaries was significant.

Methane Engine Combustion Test Facility Construction and Preliminary Tests (메탄엔진 연소시험설비 구축 및 예비 시험들)

  • Kang, Cheolwoong;Hwang, Donghyun;Ahn, Jonghyeon;Lee, Junseo;Lee, Dain;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.89-100
    • /
    • 2021
  • This paper deals with the construction of a combustion test facility and preliminary tests for hot-firing tests of a methane engine. First, the combustion test facility for a 1 kN-class thrust chamber using liquid oxygen/gas methane as propellants was designed and built. Before hot-firing tests, the cold-flow tests of each propellant line and the ignition tests of torch igniter/afterburner were performed to verify propellant supply stability of the combustion test facility, operation of the control and measurement system, and successful ignition. Finally, a preliminary hot-firing test was conducted to measure the combustion efficiency, heat flux, and combustion stability of a thrust chamber prototype. The constructed combustion test facility will be helpfully used for basic research and development of methane engine thrust chambers.