• Title/Summary/Keyword: Methane Hydrate

Search Result 120, Processing Time 0.032 seconds

Formation characteristics of gas hydrate in sediments (퇴적층에서의 가스 하이드레이트 생성 특성)

  • Lee, Jae-Hyoung;Lee, Won-Suk;Kim, Se-Joon;Kim, Hyun-Tae;Huh, Dae-Gi
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.630-633
    • /
    • 2005
  • Some gases can be formed into hydrate by physical combination with water under appropriate temperature and pressure condition. Besides them, it was found that the pore size of the sediments can affect the formation and dissociation of hydrate. In this study, formation temperatures of carbon dioxide and methane hydrate have been measured using isobaric method to investigate the effects of flow rates of gases on formation condition of hydrate in porous rock samples. The flow rates of gases were controlled using a mass flow controller. To minimize Memory effect, system temperature increased for the dissociation of gas hydrates and re-established the initial saturation. The results show that the formation temperature of hydrate decreases with increasing the injection flow rate of gas. This indicates that the velocity of gas in porous media may act as kinds of inhibitor for the formation of hydrate.

  • PDF

Investigation on the Self-preservation Effect of Natural Gas Hydrates (천연가스 하이드레이트의 자기보존 효과 연구)

  • Lee, Jong-Won;Lee, Ju Dong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.123.2-123.2
    • /
    • 2011
  • Self-preservation effect was identified by means of macroscopic dissociation experiments after keeping natural gas hydrate samples at 258 K for 15 days. The hydrate samples were formed using synthetic natural gas hydrate whose compositions are 90% $CH_4$, 7% $C_2H_6$, and 3% $C_3H_8$. In addition, during the formation, heavy hydrocarbons of propane and ethane are found to occupy hydrate cages in a more favorable way than methane so as to change the gas composition after hydrate formation. Experimental results obtained in this study can provide useful information on applications of natural gas hydrate for storing or transporting natural gas in the form of solid hydrate.

  • PDF

Dependence of Drawdown Pressure on the Hydrate Re-formation during Methane Hydrate Production and Its Inhibition with Hydrate Inhibitors (천연가스 하이드레이트 생산시 유발되는 하이드레이트 재생성의 압력효과 및 억제제의 저해효과)

  • Kang, Seong-Pil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.148.2-148.2
    • /
    • 2011
  • 천연의 메탄 하이드레이트를 생산하기 위한 방법으로는 크게 다음의 세 가지가 알려져 있다; 감압법, 열 자극법, 저해제 주입법. 갑압법이 가장 경제성이 높은 방법으로 보고 있으며, 이를 활용한 개발생산 시에는 해리 이후의 잔류 물에서 하이드레이트 전구체라고 알려진 하이드레이트 구조가 남아 있으며 이는 생산된 메탄 가스의 이송 과정에서 하이드레이트 재생성의 위험을 높이게 된다. 하이드레이트 재생성을 방지할 수 있는 한 가지 수단으로는 억제제를 주입하는 방법이 가능한데, 적절한 양을 주입함으로써 생산의 경제성을 높일 수 있다. 최근 들어 kinetic 억제제의 적용이 인기를 얻고 있는 바, 수용성 고분자인 이들 억제제를 적용하여 초기 하이드레이트 핵 생성을 지연시킬 수 있다. 이들 kinetic 억제제를 메탄 하이드레이트 생산 과정에서 투여하는 방법을 실험적으로 측정해 보았고, 잔류의 하이드레이트 구조에 대한 존재여부에 대하여 간접적으로 증명해보고자 하였다. kinetic 억제제로는 Poly Vinyl Caprolactam (PVCap)을 선택하였다. 해리압력, PVCap 주입 농도에 변화를 주면서 메탄 하이드레이트 생산, 수송과정에서 발생할 수 있는 하이드레이트 재생성 억제에 대한 효과를 실험적으로 측정하였다.

  • PDF

A Study on Methane Hydrate Formation using Zeolite (제올라이트를 이용한 메탄 하이드레이트 생성에 대한 연구)

  • Park, Sung-Seek;Kim, Dae-Jin;Kim, Nam-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.154.2-154.2
    • /
    • 2010
  • 상대적으로 이산화탄소 배출량이 적으며, 기존의 천연가스를 대체할 수 있고, 21세기 신 에너지원으로 기대되고 있는 메탄 하이드레이트(Methane hydrate)는 태평양과 대서양의 대륙사면 및 대륙붕, 남극대륙의 주변해역 등지에서 자연적으로 발생한 메탄 하이드레이트의 분포가 확인되었으며, 그 매장량의 1조 탄소톤 이상으로 기존 화석연료의 매장량이 5천억 탄소톤, 대기중의 메탄가스가 3억 6천만 탄소톤임을 고려할 때 2배에 이르는 막대한 양이라고 보고하였다. 따라서 메탄 하이드레이트는 화석에너지를 대체할 수 있는 차세대 청정 에너지 또는 대체 에너지원으로서의 무한한 잠재력을 가지고 있어 새로운 에너지분야로 크게 주목을 받고 있다. 또한 하이드레이트는 $172m^3$의 메탄가스와 $0.8m^3$의 물로 분해된다. 만약, 특성을 역으로 이용하여 산업적으로 고체화 수송을 할 경우 화수송보다 18-24%의 비용절감이 이루어질 것으로 예상되어진다. 그러나 메탄 하이드레이트를 인공적으로 만들경우 물과 가스의 반응율이 낮아 하이드레이트 형성시간이 상당히 길고 가스 충진율도 낮다. 따라서 본 연구에서는 하이드레이트를 빨리 만들며 가스 충진율도 증가시키기 위하여 증류수와 다공성물질이며 나노세공(Nano pore)을 가지고 있는 제올라이트를 증류수에 첨가하고, 초음파 분산하여 만든 혼합유체를 메탄가스와 반응시켜 하이드레이트 형성 실험을 수행하여 비교 분석하였다. 그 결과 0.01 wt% 제올라이트 혼합유체에서 증류수보다 하이드레이트가 훨씬 빨리 생성되었으며, 메탄가스소모량은 ${\Delta}T_{subc}$=0.5K에서 약 4배 높음을 보였다.

  • PDF

Drilling Gas Hydrate at Hydrate Ridge, ODP Leg 204

  • Lee Young-Joo;Ryu Byong-Jae;Kim Ji-Hoon;Lee Sang-Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.663-666
    • /
    • 2005
  • Gas hydrates are ice-like compounds that form at the low temperature and high pressure conditions common in shallow marine sediments at water depths greater than 300-500 m when concentrations of methane and other hydrocarbon gases exceed saturation. Estimates of the total mass of methane carbon that resides in this reservoir vary widely. While there is general agreement that gas hydrate is a significant component of the global near-surface carbon budget, there is considerable controversy about whether it has the potential to be a major source of fossil fuel in the future and whether periods of global climate change in the past can be attributed to destabilization of this reservoir. Also essentially unknown is the interaction between gas hydrate and the subsurface biosphere. ODP Leg 204 was designed to address these questions by determining the distribution, amount and rate of formation of gas hydrate within an accretionary ridge and adjacent basin and the sources of gas for forming hydrate. Additional objectives included identification of geologic proxies for past gas hydrate occurrence and calibration of remote sensing techniques to quantify the in situ amount of gas hydrate that can be used to improve estimates where no boreholes exist. Leg 204 also provided an opportunity to test several new techniques for sampling, preserving and measuring gas hydrates. During ODP Leg 204, nine sites were drilled and cored on southern Hydrate Ridge, a topographic high in the accretionary complex of the Cascadia subduction zone, located approximately 80km west of Newport, Oregon. Previous studies of southern Hydrate Ridge had documented the presence of seafloor gas vents, outcrops of massive gas hydrate, and a pinnacle' of authigenic carbonate near the summit. Deep-towed sidescan data show an approximately $300\times500m$ area of relatively high acoustic backscatter that indicates the extent of seafloor venting. Elsewhere on southern Hydrate Ridge, the seafloor is covered with low reflectivity sediment, but the presence of a regional bottom-simulating seismic reflection (BSR) suggests that gas hydrate is widespread. The sites that were drilled and cored during ODP Leg 204 can be grouped into three end-member environments basedon the seismic data. Sites 1244 through 1247 characterize the flanks of southern Hydrate Ridge. Sites 1248-1250 characterize the summit in the region of active seafloor venting. Sites 1251 and 1252 characterize the slope basin east of Hydrate Ridge, which is a region of rapid sedimentation, in contrast to the erosional environment of Hydrate Ridge. Site 1252 was located on the flank of a secondary anticline and is the only site where no BSR is observed.

  • PDF

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.50-57
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.268-275
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

  • PDF

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.268-275
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

  • PDF

[ $CO_2$ ] Sequestration on Various Structures of Natural Gas Hydrate Layer for Effective Recovery of $CH_4$ Gas

  • Park, Young-June;Choi, Suk-Jeong;Shin, Kyu-Chul;Seol, Ji-Woong;Lee, Hu-En
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.410-411
    • /
    • 2006
  • On the continental margins and in permafrost regions, natural gas, which has been expected to replace petroleum energy, exists In solid hydrate farm. World hydrate reserves Including natural gas are estimated at about twice as much as the energy contained In total fossil fuel reserves. Because of its vast quantities, the efficient recovery of natural gas from natural gas hydrate becomes the most important factor on evaluating the economic feasibility in the sense of commercialization. It has been noted that carbon dioxide, one of the well-known green house gases, possibly can be stored in the ocean floor as a carbon dioxide hydrate. If the natural gas hydrate could be converted into carbon dioxide hydrate, natural gas hydrate deposits would serve as energy sources as well as carbon dioxide storage sites in the deep ocean sediments. In this study, we first attempted to examine the real swapping phenomenon occurring between guest molecules and various structures of gas hydrate through spectroscopic identification such as NMR spectroscopy.

  • PDF

Strategy for Solving Future Energy and Global Warming Using Icy materials (얼음 물질을 이용한 미래 에너지와 지구 온난화 처리 방안)

  • Shin, Kyu-Chul;Lee, Huen
    • Journal of Plant Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.81-93
    • /
    • 2007
  • Gas hydrates are known to form by physical interactions between host water and guest gas molecules and thus can be treated as a special type of icy materials. The gas hydrates are recently highlighted because of their use to future energy source even though they were discovered naturally in the deep-sea marine sediments a long time ago. However, the present and future urgent task is to develop the efficient and safe production technology for recovering methane from gas hydrates. Here, we propose one of potential recovery processes using swapping phenomenon occurring between gaseous carbon dioxide and methane hydrate deposits. Such a swapping process provide several technological and economical advantages over conventional processes. The carbon dioxide can be directly sequestered into methane hydrate layer and simultaneously methane can be produced with a high recovery rate more than 90%. In addition, the icy powders can be effectively used as a new medium for storing hydrogen. To increase hydrogen storage capacity the icy hydrate networks need to be redesigned to create the more empty cages in which hydrogen gas can be enclathrated. Functionalized icy materials might be used in a variety of energy and environmental fields.