• Title/Summary/Keyword: Methane Combustion

Search Result 426, Processing Time 0.021 seconds

Characteristics of Premixed Flame Propagations of R134a/Methane in a Constant Volume Combustion Chamber (정적 연소실 내 R134a 및 메탄 예혼합 화염의 전파 특성)

  • Choi, Byung Chul;Park, June Sung
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.85-86
    • /
    • 2014
  • The characteristics of the outward-propagating premixed flames of stoichiometric mixtures of R134a/methane/oxygen/nitrogen have been experimentally investigated in a constant volume combustion chamber. Three regimes of the expanding flames were categorized based on the flame behavior.

  • PDF

The effect of flue-gas recirculation on combustion characteristics of regenerative low NOx burner (축열식 저 NOx 연소기의 배가스 재순환이 연소특성에 미치는 영향)

  • Kang, Min-Wook;Yoon, Young-Bin;Dong, Sang-Keun
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.97-104
    • /
    • 2002
  • The conventional regenerative system has a high thermal efficiency as well as energy saving using the high preheated combustion air. in spite of these advantages, it can not avoid high nitric oxide emissions. Recently, flameless combustion has received much attention to solve these problems. In this research, numerical analysis is performed for flow-combustion phenomena in the self regenerative burner. In this analysis we used Fluent 6.0 code. the that is developed for commercial use, Methane gas is used as a fuel and two-step reaction model for methane and Zeldovich mechanism for NO generation are used. the velocity of the preheated combustion air is used as a parameter and we analyze the characteristics of flow-field, temperature distributions and NO emissions. Due to the increased recirculation rate, the maximum temperature of flame is significantly increased and NOx emissions is reduced

  • PDF

A Study on Combustion Characteristics of Turbulent Methane/Oxygen Diffusion Flames (메탄/산소 난류 확산화염의 연소 특성에 관한 연구)

  • Lee, Sang-Min;Kim, Ho-Keun;Kim, Han-Seok;Ahn, Kook-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.118-123
    • /
    • 2004
  • The combustion characteristics of 0.03MW turbulent methane/oxygen diffusion flames have been investigated to give basic informations for designing industrial oxyfuel combustors. NOx reduction has become one of the most determining factors in the combustor design since 3-5% nitrogen is intrinsically included from the current oxygen producing processes. Flame lengths and NOx concentrations were measured by varying flow velocities with and without installing quarls. Flame stabilities are significantly enhanced by oxyfuel combustion in contrast to air-fuel combustion. Flame length decreases with increasing fuel or oxygen velocity because of the enhancement of turbulent mixing. NOx concentration was reduced with increasing flo velocities. This can be attributed to the entrainment of inert product gases into flame decreasing flame temperature. The installation of quarl on the burners rather increased NOx concentration since the quarl blocked the entrainment above the nozzles.

  • PDF

Computational Fluid Dynamics Analysis of 25kW Plate Type Methane-steam Reformer (25kW급 평판형 메탄-수증기 개질기 열유동 전산해석)

  • Shin, Dong-Hoon;Seo, Hye-Gyung;Lim, Hee-Chun;Lee, Sang-Duk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.103-106
    • /
    • 2006
  • The Plate reformer consisting of combustion chamber and reforming chamber for 25 kW MCFC stack has been operated and computational fluid dynamics was applied to estimate reactions and thermal fluid behavior in the reformer. The methane air 2-stage reaction was assumed in the combustion chamber, and three step steam reforming reactions were included in the calculation. Flow uniformity, reaction rate and species distribution, and temperature distribution were analyzed. In particular, temperature distribution was compared with the measurements to show good agreement in the combustion chamber, however, inappropriate agreement in the reformer chamber

  • PDF

Combustion Characteristics of Landfill Gas in Constant Volume Combustion Chamber for Large Displacement Volume Engine (III) - Torch Ignition (1) - (대형기관 모사 정적연소실에서 매립지 가스의 연소특성에 대한 연구 (III) - 토치 점화 (1) -)

  • Kim, Inok;Ohm, Inyong;Kwon, Soon Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.125-134
    • /
    • 2015
  • This is the third paper on the combustion characteristics of the landfill gas in a constant volume combustion chamber for a large displacement volume commercial engine. It is the first in this series to discuss the effects of the torch device on combustion. The results show that an optimum orifice ratio exists regardless of the torch volume, and a few adverse effects on the combustion are observed for an excessively small orifice ratio. In addition, the torch ignition decreases the initial burn duration, and the decrease in the heat transfer caused by this decreased duration contributes to an increase in the peak combustion pressure. Finally, the torch mostly plays a positive role in shortening the main burn duration when the combustion condition is worsened by a lower methane fraction. Yet, the torch decreases the initial burn duration rather than the main burn as the methane fraction increases.

Numerical Study on the Application of High Temperature Catalytic Combustion to a Gas Turbine (고온촉매연소의 가스터빈 적용에 관한 수치적 연구)

  • Kim, Hyung-Man;Jeun, Ho-Sig;Jang, Seok-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.989-994
    • /
    • 2001
  • Numerical simulations of high temperature catalytic combustion have been performed for the application to a gas turbine combustor. Dependences of inlet temperature and pressure on the distributions of temperature and species concentrations were investigated using plug flow model with detailed homogeneous and heterogeneous chemistries of methane-air mixtures. Honeycomb typecombustor deposited with Pt catalyst of 100mm in length and 26mm in diameter is used. The results show that rapid increase of temperature profile occurs earlier with the increase of inlet temperature and the decrease of inlet pressure. The condition which catalytic combustion is stabilized exists at certain range of inlet temperature and pressure. The state of catalytic combustion is also confirmed by the distributions of species concentration.

  • PDF

Numerical Investigation on Combustion, Heat Transfer and Reforming Reaction for Methane Steam Reformer (메탄 수증기 개질반응기에서 연소, 열전달 및 개질반응 특성 연구)

  • Seo, Yong-Seog;Seo, Dong-Joo;Seo, Yu-Taek;Yoon, Wang-Lai
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.50-57
    • /
    • 2005
  • The aim of this study is to numerically investigate a compact reformer system currently under development and to design a better reforming system with more efficient heat transfer and reforming reactions. Numerical models were established separately for both the combustion part and the reforming reaction part. A comparison between the calculation results and experimental data showed that the concentration of the reformate at the exit of the reforming system was in good agreement with the measured data, but for the temperature at the exit little difference between them was found. After checking the validity of the numerical models, the heat transfer between the combustion gas and reforming catalysts was estimated and the behavior of the catalyst bed was investigated as a function of the operation parameters.

  • PDF

Effects of Temperature, Pressure, and Gas Residence Time on Methane Combustion Characteristics of Oxygen Carrier Particle in a Pressurized Fluidized Bed Reactor (가압 유동층 반응기에서 산소공여입자의 메탄 연소 특성에 미치는 온도, 압력 및 기체체류시간의 영향)

  • Ryu, Ho-Jung;Park, Sang-Soo;Moon, Jong-Ho;Choi, Won-Kil;Rhee, Young-Woo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.173-182
    • /
    • 2012
  • Effects of temperature, pressure, and gas residence time on methane combustion characteristics of mass produced oxygen carrier particle (OCN706-1100) were investigated in a pressurized fluidized bed reactor using methane and air as reactants for reduction and oxidation, respectively. The oxygen carrier showed high fuel conversion, high $CO_2$ selectivity, and low CO concentration at reduction condition and very low NO emission at oxidation condition. Moreover OCN706-1100 particle showed good regeneration ability during successive reduction-oxidation cyclic tests up to the 10th cycle. Fuel conversion and $CO_2$ selectivity decreased and CO emission increased as temperature increased. These results can be explained by trend of calculated equilibrium CO concentration. However, $CO_2$ selectivity increased as pressure increased and fuel conversion increased as gas residence time increased.

Numerical Studies on Combustion Characteristics of a Hybrid Catalytic Combustor (하이브리드 촉매 연소기의 연소특성에 관한 수치적 연구)

  • Hwang, Cheol-Hong;Jeong, Yeong-Sik;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.583-592
    • /
    • 2001
  • The combustion characteristics of the hybrid catalytic(catalytic+thermal) combustor with a lean methane-air mixture on platinum catalyst were investigated numerically using a 2-D boundary layer model with detailed homogeneous and heterogeneous chemistries. for the more accurate calculations, the actual surface site density of monolith coated with platinum was decided by the comparison with experimental data. It was found that the homogeneous reactions in the monolith had little effect on the change of temperature profile, methane conversion rate and light off location. However, the radicals such as OH and CO were produced rapidly at exit by homogeneous reactions. The effect of operation conditions such as equivalence ratio, temperature, velocity, pressure and diameter of the monolith channel at the entrance were studied. In thermal combustor, the production of N$_2$O was more dominant than that of NO due to the relative importance of the reaction N$_2$+O(+M)→N$_2$O(+M). Finally the productions of CO and NOx by amount of methane addition were studied.