• Title/Summary/Keyword: Methane ($CH_4$)

Search Result 733, Processing Time 0.026 seconds

Characteristics of Methane Production from Piggery Manure Using Anaerobic Digestion (혐기성 소화를 통한 돈분의 메탄 생성 특성)

  • Lee, Chae-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.3
    • /
    • pp.113-120
    • /
    • 2007
  • Anaerobic batch tests were performed to evaluate the characteristics of methane production from piggery manure such as the ultimate methane yield (UMY), the kinetic constant and the maximum methane production rate. The kinetic behavior of anaerobic degradation of piggery manure was assumed as a first order reaction. The UMY, the first order kinetic constant and the maximum methane production rate were 0.27~0.44L $CH_4/gVS$, $0.161{\sim}0.280d^{-1}$ and 0.043~0.120L $CH_4/d$, respectively. Reactor of piggery manure as the self-seed source of anaerobic digestion resulted in longer acclimation time than reactors seeded with anaerobic digested sludge (ADS). But there was no little difference in the UMY between the two seed materials. The anaerobic digestion can be effective for the treatment of piggery manure containing high concentration of solids, the two-stage anaerobic digestion is, however, thought to be more effective than the traditional single one.

  • PDF

CO Emission Characteristics in the Interacting Counterflow Methane and Hydrogen Partially Premixed Flames (상호작용하는 대향류 메탄-수소 부분예혼합화염의 CO 배출특성)

  • Park, Ji-Woong;Oh, Chang Bo;Kim, Tae-Hyung;Park, Jongho
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.3
    • /
    • pp.1-8
    • /
    • 2012
  • The CO emission characteristics of interacting hydrogen and methane partially premixed flames were numerically investigated. A counterflow geometry was introduced to establish interacting two partially premixed flames. An one-dimensional OPPDIF code was used to simulate the interacting flames. The GRI-v3.0 was used to calculate the chemical reactions. Emission index for CO(EICO) was evaluated to quantify the CO emitted from the interacting flames. The global strain rate and equivalence ratios for each flame(${\Phi}_{CH_4}$ and ${\Phi}_{H_2}$) were used as parameters to control the extent of interaction between two partially premixed flames. When ${\Phi}_{CH_4}$ was kept to stoichiometric condition and ${\Phi}_{H_2}$ was at rich condition, unburned H2 species of hydrogen flame was transported to the methane flame and affected reactions related with CO formation. When ${\Phi}_{CH_4}$ increased from a stoichiometry to rich condition while ${\Phi}_{H_2}$ was kept to stoichiometric condition, EICO increased initially, had a peak value at ${\Phi}_{CH_4}=1.5$ and decreased gradually. This could be elucidated with an analysis for the elementary reactions related with CO formation.

Assessment of CH4 oxidation in macroinvertebrate burrows of tidal flats (갯벌의 무척추 동물 서식굴 내 메탄산화 평가)

  • Kang, J.;Kwon, K.;Woo, H.J.;Choi, J.U.
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.95-101
    • /
    • 2019
  • In tidal flats that lack plants, methane ($CH_4$) fluxes are both positive (gas emission) and negative (gas "sinking") in nature. The levels of methanotroph populations significantly affect the extent of $CH_4$ sinking. This preliminary study examined $CH_4$ flux in tidal flats using a circular closed-chamber method to understand the effects of macroinvertebrate burrowing activity. The chamber was deployed over decapods (mud shrimp, Laomedia astacina and crab, Macrophthalmus japonicus) burrows for ~ 2 h, and the $CH_4$ and $CO_2$ concentrations were continuously monitored using a closed, diffuse $CH_4/CO_2$ flux meter. We found that Laomedia astacina burrow (which is relatively long) site afforded higher-level $CH_4$ production, likely due to diffusive emission of $CH_4$ in deep-layer sediments. In addition, the large methanotrophic bacteria population found in the burrow wall sediments has $CH_4$ oxidation (consumption) potential. Especially, nitrite-driven anaerobic oxidation of methane (AOM) may occur within burrows. The proposed $CH_4$-oxidation process was supported by the decrease in the ${\delta}^{13}C$ of headspace $CO_2$ during the chamber experiment. Therefore, macroinvertebrate burrows appear to be an important ecosystem environment for controlling atmospheric $CH_4$ over tidal flats.

Applying methane and carbon flow balances for determination of first-order landfill gas model parameters

  • Park, Jin-Kyu;Chong, Yong-Gil;Tameda, Kazuo;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.374-383
    • /
    • 2020
  • Landfill gas (LFG) emissions from a given amount of landfill waste depend on the carbon flows in the waste. The objective of this study was to more accurately estimate the first-order decay parameters through methane (CH4) and carbon flow balances based on the analysis of a full-scale landfill with long-term data and detailed field records on LFG and leachate. The carbon storage factor for the case-study landfill was 0.055 g-degradable organic carbon (DOC) stored per g-wet waste and the amounts of DOC lost with the leachate were less than 1.3%. The appropriate CH4 generation rate constant (k) for bulk waste was 0.24 y-1. The the CH4 generation potential (L0) values ranged 33.7-46.7 m3-CH4 Mg-1, based on the fraction of DOC that can decompose (DOCf) value of 0.40. Results show that CH4 and carbon flow balance methods can be used to estimate model parameters appropriately and to predict long-term carbon emissions from landfills.

Hydrogen Production from Methane Reforming Reactions over Ni/MgO Catalyst

  • Wen Sheng Dong;No, Hyeon Seok;Zhong Wen Liu;Jeon, Gi Won;Park, Sang Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1323-1327
    • /
    • 2001
  • The catalyst Ni/MgO (Ni : 15 wt%) has been applied to methane reforming reactions, such as steam reforming of methane (SRM), partial oxidation of methane (POM), and oxy-steam reforming of methane (OSRM). It showed high activity and good stability in all the reforming reactions. Especially, it exhibited stable catalytic performance even in stoichiometric SRM (H2O/CH4 = 1). From TPR and H2 pulse chemisorption results, a strong interaction between NiO and MgO results in a high dispersion of Ni crystallite. Pulse reaction results revealed that both CH4 and O2 are activated on the surface of metallic Ni over the catalyst, and then surface carbon species react with adsorbed oxygen to produce CO.

Autothermal Reforming Reaction of Methane using Ni-Ru/$Al_2O_3$-MgO Metallic Monolith Catalysts (Ni-Ru/$Al_2O_3$-MgO 금속 모노리스 촉매체를 이용한 메탄의 자열 개질반응)

  • Lee, Chang-Ho;Lee, Tae-Jun;Shin, Jang-Sik;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.321-328
    • /
    • 2011
  • The autothermal reforming reaction of methane was investigated to produce hyd rogen with Ni/$CeO_2-ZrO_2$, Ni/$Al_2O_3$-MgO and Ni-Ru/$Al_2O_3$-MgO catalysts. Honeycomb metalli c monolith was applied in order to obtain high catalytic activity and stability in autothermal r eforming. The catalysts were characterized by XRD, BET and SEM. The influence of various catalysts on hydrogen production was studied for the feed ratio($O_2/CH_4$, $H_2O/CH_4$). The $O_2/CH_4$ and $H_2O/CH_4$ ratio governed the methane conversion and temperature profile of reactor. Th e reactor temperature increased as the reaction shifted from endothermic to exothermic reactio n with increasing $O_2/CH_4$ ratio. Among the catalysts used in the experiment, the Ni-Ru/$Al_2O_3$-MgO catalyst showed the highest activity. The 60% of $CH_4$ conversion was obtained, and th e reactor temperature was maintained $600^{\circ}C$ at the condition of GHSV=$10000h^{-1}$ and feed ratio S/C/O=0.5/1/0.5.

Tuning Behavior of (Cyclic Amines + Methane) Clathrate Hydrates and Their Application to Gas Storage (고리형 아민이 포함된 메탄 하이드레이트의 튜닝과 가스 저장 연구)

  • Ki Hun Park;Dong Hyun Kim;Minjun Cha
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.394-400
    • /
    • 2023
  • In this study, the tuning phenomena, gas storage capacity, and thermal expansion behaviors of binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates were investigated for the potential applications of clathrate hydrates to gas storage. To understand the tuning behaviors of binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates, 13C solid-state NMR spectroscopy was used, and the results confirmed that maximum tuning factors for the binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates were achieved at 0.5 mol% and 1.0 mol% of guest concentration, respectively. The gas storage capacity of binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates were also checked, and the results showed the CH4 capacity of our hydrate systems was superior to that of binary (tetrahydrofuran + CH4) and (cyclopentane + CH4) clathrate hydrates. The synchrotron diffraction patterns of these hydrates collected at 100, 150, 200, and 250 K confirmed the formation of a cubic Fd-3m hydrate. In addition, the lattice constant of clathrate hydrates with cyclopentylamine and methane were larger than that with cyclopropylamine and methane due to the effects of molecular size and shape.

Diamond-like Carbon Films Synthesized from $CH_4$, $CH_4-H_2$, and $CH_4-Ar$ Plasmas (메탄, 메탄-수소 및 메탄-아르곤 플라즈마로부터 합성된 다이아몬드성 탄소막)

  • Choi, Y.;Hong, J. W.;Lee, H. W.;Song, J. S.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.1
    • /
    • pp.12-17
    • /
    • 1995
  • Diamondlike carbon(DLC)films having good characteristics in mechanical and optical properties, were synthesized by rf-plasma enhanced chemical vapor deposition method. Methane, methane-hydrogen, or methane-argon were used as source gases. The infrared transparency and composition of the films were investigate. Especially, the anti-reflection effect of KLC film in infrared region was confirmed by depositing it on Ge/Si sample. When DLC films were deposited on the plastic substrates and thermal distortion, which were originated before and during deposition, respectively, played a role as a crack source of the films.

  • PDF

Estimation of Ultimate Methane and Hydrogen Sulfide Yields for C&D Waste and MSW Using BMP Test (건설폐기물, 생활폐기물의 용출특성 분석과 BMP test를 통한 최종메탄(CH4) 및 황화수소(H2S) 수율 산정)

  • Jung, Sukyoung;Jeong, Seongyeob;Chang, Soonwoong
    • New & Renewable Energy
    • /
    • v.10 no.1
    • /
    • pp.30-40
    • /
    • 2014
  • The main object of this study was to offer information about incoming waste in landfill and to evaluate biochemical methane and hydrogen sulfide potentials of landfill wastes. We examined brick, soil, mixed waste (C&D waste and MSW) samples for the study. The leaching experiments showed that BOD, COD and sulfate were determined in the range of 0~18,816 mg/kg, 85~21,100 mg/kg and 160~1,205 mg/kg, respectively in 6hr extraction test. An accumulated extraction tests for 140day were determined BOD 226~197,219 mg/kg, COD 436~242,588 mg/kg and Sulfate 1,090~25,140 mg/kg. Also, BMP (biochemical methane potential) tests were carried out to examine methane and hydrogen sulfide yields for the 3 different wastes. As a result, methane yield was determined to 262.68 mL $CH_4/g$ VS of MSW and 0~17.75 mL $CH_4/g$ VS in brick, soil and C&D waste. Higher hydrogen sulfide yield was observed to 0.079mL $H_2S/g$ VS in C&D waste. This result indicate that brick and soil could be sources of sulfate, and higher production of hydrogen sulfide could be odor problem and inhibitor of methane production.

Field Application of Biocovers in Landfills for Methane Mitigation (매립지 메탄 저감을 위한 바이오커버의 현장 적용 평가)

  • Jung, Hyekyeng;Yun, Jeonghee;Oh, Kyung Cheol;Jeon, Jun-Min;Ryu, Hee-Wook;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.4
    • /
    • pp.322-329
    • /
    • 2017
  • Two pilot-scale biocovers (PBCs) were installed in a landfill, and the methane ($CH_4$) concentrations at their inlets and outlets were monitored for 240 days to evaluate the methane removability. Consequently, the packing materials were sampled from the PBCs, and their potential $CH_4$ oxidizing abilities were evaluated in serum vials. The $CH_4$ concentration at the inlet of the biocovers was observed to be in the range of 23.7-47.9% (average = 41.3%, median = 42.6%). In PBC1, where a mixture of soil, earthworm cast, and compost (7:2:1, v/v) was employed as the packing material, the $CH_4$ removal efficiency was evaluated to be between 60.7-85.5%. In PBC2, which was filled with a mixture of soil, earthworm cast, perlite, and compost (4:2:3:1, v/v), the removal efficiency was evaluated to be between 29.2-78.5%. Although the packing materials had an excellent $CH_4$ oxidizing potential (average oxidation rate for $CH_4=180-199{\mu}g\;CH_4{\cdot}g\;packing\;material^{-1}{\cdot}h^{-1}$), $CH_4$ removal efficiency in PBC1 and PBC2 decreased to the range of 0-30% once the packing materials in the PBCs were clogged and channeled. Furthermore, seasonal effects exhibited no significant differences in the $CH_4$ removal efficiency of the biocovers. The results of this study can be used to design and operate real-scale biocovers in landfills to mitigate $CH_4$ buildup.