• Title/Summary/Keyword: Meteorological relevance

Search Result 9, Processing Time 0.026 seconds

Characteristics of nocturnal maximum ozone and meteorological relevance in Pusan coastal area (부산 연안역의 야간 고농도 오존 발생 특성과 기상학적 관련성)

  • 전병일
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.287-292
    • /
    • 1999
  • This study was performed to investigate the characteristics of nocturnal maxiumu ozone occurrence and the meteorological relevance using to hourly ozone data and meteorological data for 1995~1996 in Pusan coastal area. Kwangbokdong showed the highest occurrence of nocturnal maximum ozone as 36.9%, and Deokcheondong showed the lowest occurrence(9.2%) for research period in Pusan. The occurrence rates of nocturnal maximum ozone concentration were decreased toward land area. The low maximum temperature, high minimum temperature, low diurnal range, high relative humidity, high wind speed, high could amount, low sunshine and low radiation were closely related to the main meteorological characteristics occuring the nocturnal maximum concnetration of ozone. It was shown that normal daily variation of ozone concentration by strong photochemical reaction at the before day of nocturnal maximum ozone. The concnetration of nocturnal maximum ozone were occured by entrainment of ozone from the upper layer of developed mixing layer. There are no ozone sources near the ground at night, so that the nighttime ozone should be entrained from the upper layer by forced convection.

  • PDF

Characteristics of Summertime High PM2.5 Episodes and Meteorological Relevance in Busan (부산지역 여름철 고농도 PM2.5 농도 사례와 기상학적 관련성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.29 no.7
    • /
    • pp.761-772
    • /
    • 2020
  • This research investigated the meteorologically relevant characteristics of high PM2.5 episodes in Busan. The number of days when daily mean PM10 concentration exceeded 100 ㎍/㎥ and the PM2.5 concentration exceeded 50 ㎍/㎥ over the last four years in Busan were 24 and 58, respectively. Haze occurrence frequency was 37.6% in winter, 27.4% in spring, 18.6% in fall, and 16.4% in summer. Asian dust occurrence frequency was 81.8% in spring, 9.1% in fall and winter, and 0% in summer. During summer in Busan, high PM2.5 episode occurred under the following meteorological conditions. 1) Daytime sea breeze. 2) Mist and haze present throuout the day. 3) Anti-cyclone located around the Korean peninsula. 4) Stable layer formed in the lower atmosphere. 5) Air parcel reached Busan by local transport rather than by long-range transport. These results indicate that understanding the meteorological relevance of high PM2.5 episodes could provide insight for establishing a strategy to control urban air quality.

A Prediction Model Based on Relevance Vector Machine and Granularity Analysis

  • Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.157-162
    • /
    • 2016
  • In this paper, a yield prediction model based on relevance vector machine (RVM) and a granular computing model (quotient space theory) is presented. With a granular computing model, massive and complex meteorological data can be analyzed at different layers of different grain sizes, and new meteorological feature data sets can be formed in this way. In order to forecast the crop yield, a grey model is introduced to label the training sample data sets, which also can be used for computing the tendency yield. An RVM algorithm is introduced as the classification model for meteorological data mining. Experiments on data sets from the real world using this model show an advantage in terms of yield prediction compared with other models.

Homogeneous Regions Classification and Regional Differentiation of Snowfall (적설의 동질지역 구분과 지역 차등화)

  • KIM, Hyun-Uk;SHIM, Jae-Kwan;CHO, Byung-Choel
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.42-51
    • /
    • 2017
  • Snowfall is an important natural hazard in Korea. In recent years, the socioeconomic importance of impact-based forecasts of meteorological phenomena have been highlighted. To further develop forecasts, we first need to analyze the climatic characteristics of each region. In this study, homogeneous regions for snowfall analysis were classified using a self-organizing map for impact-based forecast and warning services. Homogeneous regions of snowfall were analyzed into seven clusters and the characteristics of each group were investigated using snowfall, observation days, and maximum snowfall. Daegwallyeong, Gangneung-si, and Jeongeup-si were classified as areas with high snowfall and Gyeongsangdo was classified as an area with low snowfall. Comparison with previous studies showed that representative areas were well distinguished, but snowfall characteristics were found to be different. The results of this study are of relevance to future policy decisions that use impact-based forecasting in each region.

Characteristics of Meteorological Elements and Long-wave Radiation in the Greater Daegu Area During Winter (동절기 대구지역의 기상요소와 장파복사 특성 분석)

  • Baek, Chang-Hyeon;Choi, Dong-Ho;Lee, Bu-Yong;Lee, In-Gyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.93-102
    • /
    • 2017
  • Interpretation of relevance between long-wave radiation and meteorological elements is recognized as an essential element for understanding the underlying mechanism of urban thermal environment formation. In this study, we analyzed relation between three elements : long-wave radiation, temperature, and lower-middle class cloudiness. The correlation was analyzed through field observations. The results are as follows. (1) Temperatures and long-wave radiation increased from January to March. This phenomenon has been confirmed in urban and suburban areas. (2) Long-wave radiations showed a tendency to increase clearly with increasing cloudiness.

Changes of Cultivation Areas and Major Disease for Spicy Vegetables by the Change of Meteorological Factors (기상요인 변화에 따른 주요 양념채소의 재배면적 및 주요 병해 발생 변화)

  • Yoon, Deok-Hoon;Oh, So-Yong;Nam, Ki-Woong;Eom, Ki-Cheol;Jung, Pill-Kyun
    • Journal of Climate Change Research
    • /
    • v.5 no.1
    • /
    • pp.47-59
    • /
    • 2014
  • This study was conducted to estimate of future productivity for major spicy vegetables by the change of meteorological factors, temperature and precipitation. Based on analysis of meteorological factors, incidence of major disease(phytophthora blight and anthracnose) for hot pepper was over 50% with temperature over $18.3^{\circ}C$ in May and precipitation over 532 mm in July. And the meteorological factors in the August have deeply related to the incidence of virus disease(CMV and BBWV2) for hot pepper, however, both the meteorological factors and the incidence of virus disease showed to the opposite tendency. An analysis of the relevance of the white rot disease and the meteorological factors for garlic, a disease was highly investigated with temperature $15.0^{\circ}C$ to $15.9^{\circ}C$ in April to May. On the onion, higher incidence of white rot was investigated with temperature over $4.0^{\circ}C$ in November to January and precipitation over 40 mm in March. The occurrence of major disease for spicy vegetables and meteorological factors as a result of regression analysis, the optimal cultivation area of peppers and onions will be gradually expanded to the central regions in the near future in Korea.

Analysis on Winter Atmosphereic Variability Related to Arctic Warming (북극 온난화에 따른 겨울철 대기 변동성 분석 연구)

  • Kim, Baek-Min;Jung, Euihyun;Lim, Gyu-Ho;Kim, Hyun-Kyung
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.131-140
    • /
    • 2014
  • The "Barents Oscillation (BO)", first designated by Paul Skeie (2000), is an anomalous recurring atmospheric circulation pattern of high relevance for the climate of the Nordic Seas and Siberia, which is defined as the second Emperical Orthogonal Function (EOF) of monthly winter sea level pressure (SLP) anomalies, where the leading EOF is the Arctic Oscillation (AO). BO, however, did not attracted much interest. In recent two decades, variability of BO tends to increase. In this study, we analyzed the spatio-temporal structures of Atmospheric internal modes such as Arctic Oscillation (AO) and Barents Oscillation (BO) and examined how these are related with Arctic warming in recent decade. We identified various aspects of BO, not dealt in Skeie (2000), such as upper-level circulation and surface characteristics for extended period including recent decade and examined link with other surface variables such as sea-ice and sea surface temperature. From the results, it was shown that the BO showed more regionally confined spatial pattern compared to AO and has intensified during recent decade. The regional dipolelar structure centered at Barents sea and Siberia was revealed in both sea-level pressure and 500 hPa geopotential height. Also, BO showed a stronger link (correlation) with sea-ice and sea surface temperature especially over Barents-Kara seas suggesting it is playing an important role for recent Arctic amplification. BO also showed high correlation with Ural Blocking Index (UBI), which measures seasonal activity of Ural blocking. Since Ural blocking is known as a major component of Eurasian winter monsoon and can be linked to extreme weathers, we suggest deeper understanding of BO can provide a missing link between recent Arctic amplification and increase in extreme weathers in midlatitude in recent decades.

A Study on Prediction of Asian Dusts Using the WRF-Chem Model in 2010 in the Korean Peninsula (WRF-Chem 모델을 이용한 2010년 한반도의 황사 예측에 관한 연구)

  • Jung, Ok Jin;Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.90-108
    • /
    • 2015
  • The WRF-Chem model was applied to simulate the Asian dust event affecting the Korean Peninsula from 11 to 13 November 2010. GOCART dust emission schemes, RADM2 chemical mechanism, and MADE/SORGAM aerosol scheme were adopted within the WRF-Chem model to predict dust aerosol concentrations. The results in the model simulations were identified by comparing with the weather maps, satellite images, monitoring data of $PM_{10}$ concentration, and LIDAR images. The model results showed a good agreement with the long-range transport from the dust source area such as Northeastern China and Mongolia to the Korean Peninsula. Comparison of the time series of $PM_{10}$ concentration measured at Backnungdo showed that the correlation coefficient was 0.736, and the root mean square error was $192.73{\mu}g/m^3$. The spatial distribution of $PM_{10}$ concentration using the WRF-Chem model was similar to that of the $PM_{2.5}$ which were about a half of $PM_{10}$. Also, they were much alike in those of the UM-ADAM model simulated by the Korean Meteorological Administration. Meanwhile, the spatial distributions of $PM_{10}$ concentrations during the Asian dust events had relevance to those of both the wind speed of u component ($ms^{-1}$) and the PBL height (m). We performed a regressive analysis between $PM_{10}$ concentrations and two meteorological variables (u component and PBL) in the strong dust event in autumn (CASE 1, on 11 to 23 March 2010) and the weak dust event in spring (CASE 2, on 19 to 20 March 2011), respectively.

Relationship Analysis between Lineaments and Epicenters using Hotspot Analysis: The Case of Geochang Region, South Korea (핫스팟 분석을 통한 거창지역의 선구조선과 진앙의 상관관계 분석)

  • Jo, Hyun-Woo;Chi, Kwang-Hoon;Cha, Sungeun;Kim, Eunji;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.469-480
    • /
    • 2017
  • This study aims to understand the relationship between lineaments and epicenters in Geochang region, Gyungsangnam-do, South Korea. An instrumental observation of earthquakes has been started by Korea Meteorological Administration (KMA) since 1978 and there were 6 earthquakes with magnitude ranging 2 to 2.5 in Geochang region from 1978 to 2016. Lineaments were extracted from LANDSAT 8 satellite image and shaded relief map displayed in 3-dimension using Digital Elevation Model (DEM). Then, lineament density was statistically examined by hotspot analysis. Hexagonal grids were generated to perform the analysis because hexagonal pattern expresses lineaments with less discontinuity than square girds, and the size of the grid was selected to minimize a variance of lineament density. Since hotspot analysis measures the extent of clustering with Z score, Z scores computed with lineaments' frequency ($L_f$), length ($L_d$), and intersection ($L_t$) were used to find lineament clusters in the density map. Furthermore, the Z scores were extracted from the epicenters and examined to see the relevance of each density elements to epicenters. As a result, 15 among 18 densities,recorded as 3 elements in 6 epicenters, were higher than 1.65 which is 95% of the standard normal distribution. This indicates that epicenters coincide with high density area. Especially, $L_f$ and $L_t$ had a significant relationship with epicenter, being located in upper 95% of the standard normal distribution, except for one epicenter in $L_t$. This study can be used to identify potential seismic zones by improving the accuracy of expressing lineaments' spatial distribution and analyzing relationship between lineament density and epicenter. However, additional studies in wider study area with more epicenters are recommended to promote the results.