• Title/Summary/Keyword: Meteorological observation environment

Search Result 199, Processing Time 0.024 seconds

Retrieval and Validation of Precipitable Water Vapor using GPS Datasets of Mobile Observation Vehicle on the Eastern Coast of Korea

  • Kim, Yoo-Jun;Kim, Seon-Jeong;Kim, Geon-Tae;Choi, Byoung-Choel;Shim, Jae-Kwan;Kim, Byung-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.4
    • /
    • pp.365-382
    • /
    • 2016
  • The results from the Global Positioning System (GPS) measurements of the Mobile Observation Vehicle (MOVE) on the eastern coast of Korea have been compared with REFerence (REF) values from the fixed GPS sites to assess the performance of Precipitable Water Vapor (PWV) retrievals in a kinematic environment. MOVE-PWV retrievals had comparatively similar trends and fairly good agreements with REF-PWV with a Root-Mean-Square Error (RMSE) of 7.4 mm and $R^2$ of 0.61, indicating statistical significance with a p-value of 0.01. PWV retrievals from the June cases showed better agreement than those of the other month cases, with a mean bias of 2.1 mm and RMSE of 3.8 mm. We further investigated the relationships of the determinant factors of GPS signals with the PWV retrievals for detailed error analysis. As a result, both MultiPath (MP) errors of L1 and L2 pseudo-range had the best indices for the June cases, 0.75-0.99 m. We also found that both Position Dilution Of Precision (PDOP) and Signal to Noise Ratio (SNR) values in the June cases were better than those in other cases. That is, the analytical results of the key factors such as MP errors, PDOP, and SNR that can affect GPS signals should be considered for obtaining more stable performance. The data of MOVE can be used to provide water vapor information with high spatial and temporal resolutions in the case of dramatic changes of severe weather such as those frequently occurring in the Korean Peninsula.

Development of 3D Visualization Technology for Meteorological Data (기상자료 3차원 가시화 기술개발 연구)

  • Seo In Bum;Joh Min Su;Yun Ja Young
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.58-70
    • /
    • 2003
  • Meteorological data contains observation and numerical weather prediction model output data. The computerized analysis and visualization of meteorological data often requires very high computing capability due to the large size and complex structure of the data. Because the meteorological data is frequently formed in multi-variables, 3-dimensional and time-series form, it is very important to visualize and analyze the data in 3D spatial domain in order to get more understanding about the meteorological phenomena. In this research, we developed interactive 3-dimensional visualization techniques for visualizing meteorological data on a PC environment such as volume rendering, iso-surface rendering or stream line. The visualization techniques developed in this research are expected to be effectively used as basic technologies not only for deeper understanding and more exact prediction about meteorological environments but also for scientific and spatial data visualization research in any field from which three dimensional data comes out such as oceanography, earth science, and aeronautical engineering.

  • PDF

Statistical Characteristics of Local Circulation Winds Observed using Climate Data in the Complex Terrain of Chilgok, Gyeongbuk

  • Ha-Young Kim;Soo-Jin Park;Hae-Dong Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.5
    • /
    • pp.375-384
    • /
    • 2023
  • Climate data were obtained over an eight-year period (July 2013 to June 2021) using an automatic weather observation system (AWS) installed at the foot of Mt. Geumo in Chilgok, Gyeongbuk. Using climate data, the statistical and meteorological characteristics of the local circulation between the Nakdong River and Mt. Geumo were analyzed. This study is based on automatic weather observation system data for Dongyeong, along with comparative climate data from the Korea Meteorological Administration (Chilgok) and the Gumi meteorological observatory. Over the eight- years, mountain and valley winds have occurred 48 times a year on average, with the highest occurring in May and the weakest winds in June and December. When mountain winds occurred, the temperature in the nearby lowland region more strongly decreased than when valley winds blew. However, the potential to use mountain winds to improve urban thermal environments is limited because mountain winds occur infrequently in summer when a drop in nighttime temperature is required.

The Relocation Effect of Observation Station on the Homogeneity of Seasonal Mean of Diurnal Temperature Range (기상관측소의 이전이 계절평균 일교차의 균질성에 미치는 영향)

  • Kim, Ji-Hyun;Suh, Myoung-Seok;Hong, Soon-Hee
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.437-449
    • /
    • 2010
  • The relocation effect of observation station (REOS) on the homogeneity of seasonal mean of maximum and minimum temperature, diurnal temperature range (DTR) and relative humidity (RH) was investigated using surface observation data and document file. Twelve stations were selected among the 60 stations which have been operated more than 30 years and relocated over one time. The data from Chunpungryeong station were used as a reference to separate the impacts of station relocation from the effects caused by increased green house gases, urbanization, and others. The REOS was calculated as a difference between REOS of relocated station and REOS of reference station. Although the REOS is clearly dependent on season, meteorological elements, and observing stations, statistically significant impacts are found in many stations, especially the environment of observing station after relocation is greatly changed. As a result, homogeneity of seasonal mean of meteorological elements, especially DTR and RH, is greatly reduced. The results showed that the effect of REOS, along with the effect of urbanization, should be eliminated for the proper estimation of climate change from the analysis of long-term observation data.

An Analysis of Radiative Observation Environment for Korea Meteorological Administration (KMA) Solar Radiation Stations based on 3-Dimensional Camera and Digital Elevation Model (DEM) (3차원 카메라와 수치표고모델 자료에 따른 기상청 일사관측소의 복사관측환경 분석)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae;Jo, Ji-Young
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.537-550
    • /
    • 2019
  • To analyze the observation environment of solar radiation stations operated by the Korea Meteorological Administration (KMA), we analyzed the skyline, Sky View Factor (SVF), and solar radiation due to the surrounding topography and artificial structures using a Digital Elevation Model (DEM), 3D camera, and solar radiation model. Solar energy shielding of 25 km around the station was analyzed using 10 m resolution DEM data and the skyline elevation and SVF were analyzed by the surrounding environment using the image captured by the 3D camera. The solar radiation model was used to assess the contribution of the environment to solar radiation. Because the skyline elevation retrieved from the DEM is different from the actual environment, it is compared with the results obtained from the 3D camera. From the skyline and SVF calculations, it was observed that some stations were shielded by the surrounding environment at sunrise and sunset. The topographic effect of 3D camera is therefore more than 20 times higher than that of DEM throughout the year for monthly accumulated solar radiation. Due to relatively low solar radiation in winter, the solar radiation shielding is large in winter. Also, for the annual accumulated solar radiation, the difference of the global solar radiation calculated using the 3D camera was 176.70 MJ (solar radiation with 7 days; suppose daily accumulated solar radiation 26 MJ) on an average and a maximum of 439.90 MJ (solar radiation with 17.5 days).

Research on the Meteorological Technology Development using Drones in the Fourth Industrial Revolution (4차산업혁명에서 드론을 활용한 기상기술 개발 연구)

  • Chong, Jihyo;Lee, Seungho;Shin, Seungsook;Hwang, Sung Eun;Lee, Young-tae;Kim, Jeoungyun;Kim, Seungbum
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.11
    • /
    • pp.12-21
    • /
    • 2019
  • In the era of the Fourth Industrial Revolution, drones have become a flexible device that can be integrated with new technologies. The drones were originally developed as military unmanned aircraft and are now being used in various fields. In the environment and weather observation area, the atmospheric boundary layer is near the surface where the atmosphere is the most active in the meteorological phenomenon and has a close influence on human activities. In order to carry out the study of these atmospheric boundary layers, it is necessary to observe precisely the lower atmosphere and secure the observation technology. The drones in the meteorological field can be used for meteorological observations at a relatively low maintenance cost compared to existing equipment. When used in conjunction with various sensors, the drones can be widely used in atmospheric boundary layer and local meteorological studies. In this study, the possibility of meteorological observations using drones was confirmed by conducting vertical meteorological (temperature and humidity) observation experiments equipped with a combined meteorological sensor and a radio sonde on drones owned by NIMS.

Implementation of an Automated Agricultural Frost Observation System (AAFOS) (농업서리 자동관측 시스템(AAFOS)의 구현)

  • Kyu Rang Kim;Eunsu Jo;Myeong Su Ko;Jung Hyuk Kang;Yunjae Hwang;Yong Hee Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.1
    • /
    • pp.63-74
    • /
    • 2024
  • In agriculture, frost can be devastating, which is why observation and forecasting are so important. According to a recent report analyzing frost observation data from the Korea Meteorological Administration, despite global warming due to climate change, the late frost date in spring has not been accelerated, and the frequency of frost has not decreased. Therefore, it is important to automate and continuously operate frost observation in risk areas to prevent agricultural frost damage. In the existing frost observation using leaf wetness sensors, there is a problem that the reference voltage value fluctuates over a long period of time due to contamination of the observation sensor or changes in the humidity of the surrounding environment. In this study, a datalogger program was implemented to automatically solve these problems. The established frost observation system can stably and automatically accumulate time-resolved observation data over a long period of time. This data can be utilized in the future for the development of frost diagnosis models using machine learning methods and the production of frost occurrence prediction information for surrounding areas.

Sensitivity Analysis of Ozone Simulation according to the Impact of Meteorological Nudging (기상자료동화에 따른 CMAQ 모델의 오존농도 모의 민감도 연구)

  • Kim, Taehee;Kim, Yoo-Keun;Shon, Zang-Ho;Jeong, Ju-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.4
    • /
    • pp.372-383
    • /
    • 2016
  • This study aimed at analyzing the sensitivity of ozone simulation in accordance with the meteorological nudging for a high nocturnal ozone episode. To demonstrate the effectiveness of nudging methods (e.g., nudging techniques and application domains), the following six experiments were designed: (1) control without nudging, (2) experiment with application of observation nudging to all domains (domain 1~4), and (3)~(6) experiments with application of grid nudging to domain 1, domain 1~2, domain 1~3 and all domains, respectively. As a result, the meteorological nudging had a direct (improvement of input data) and indirect (estimate natural emission) effect on ozone simulation. Nudging effects during the daytime were greater than those during the nighttime due to low accuracy of wind direction during the nighttime. On comparison of the nudging techniques, the experiments in which grid nudging was applied showed more improved results than the experiments in which observation nudging was applied. At this time point, the simulated concentrations were generally similar to the observed concentrations due to the increase in the nudging effect when grid nudging was applied up to the sub-domain. However, for high nocturnal ozone uptakes, the experiment in which grid nudging was applied do domain 1~3 showed better results than the other experiments. This is because, when grid nudging was applied to the high resolution domain (e.g., domain 4 with 1 km), the local characteristics were removed due to the smoothing effects of meteorological conditions.

Determining the Warming Effect Induced by Photovoltaic Power Plants in neighboring Region Using an Analytical Model (해석학적 모델을 이용한 태양광 발전소 주변 지역의 기온 상승 추정 연구)

  • Kim, Hae-Dong;Huh, Kyong-Chun;Kim, Ji-Hye
    • Journal of Environmental Science International
    • /
    • v.27 no.3
    • /
    • pp.227-231
    • /
    • 2018
  • We studied the warming effect induced by Photovoltaic(PV) power plants in rural areas during summer daytime using a simple analytical urban meteorological model. This analysis was based on observed meteorological elements and the capacity of the PV power plant was 10 MWp. The major axis length of the PV power plant was assumed to be 1km. Data of the necessary meteorological elements were obtained from a special meteorological observation campaign established for a over a PV power plant. We assumed that the wind flowed along the major axis of the PV power plant(1 km). As a result, the air temperature on the downwind side of the PV power plant was estimated to invrease by about $0.47^{\circ}C$.

Characteristics of Ozone Advection in Vertical Observation Analysis Around Complex Coastal Area (연직관측자료를 통한 복잡 연안지역의 오존 이류특성)

  • Lee, Hwa-Woon;Park, Soon-Young;Lee, Soon-Hwan;Leem, Heon-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.1
    • /
    • pp.57-74
    • /
    • 2009
  • In order to clarify the vertical ozone distribution in planetary boundary layer of coastal area with complex terrain, an observation campaign was carried out around Gwangyang Bay with dense pollutant emission sources during two days from June, 4 2007. For this observation are Radiosonde, SODAR(SOnic Detection And Ranging) and Tethered ozone sonde were employed. The surface meteorological and photochemical observation data provided by AWS (Automatic Weather System) and AQMS (Air Quality Monitoring System) were also applied for analysis. Synoptic condition is strongly associated with lower level ozone distribution in complex terrain coastal area. Since mesoscale circulation induced by difference of characteristics of land and sea and orographic forcing is predominant under calm synoptic condition, vertical distribution of ozone is complicate and vertical ozone concentration greatly fluctuated. However in second day when synoptic influence become strong, ozone concentration in lower levels is vertically uniform regardless of observation level. This results in vertical observation indicates that vertical ozone distribution is often determined by synoptic condition and also affects surface ozone concentration.