• Title/Summary/Keyword: Meteorological drought Index

Search Result 131, Processing Time 0.026 seconds

Comparison of Meteorological Drought and Hydrological Drought Index (기상학적 가뭄지수와 수문학적 가뭄지수의 비교)

  • Lee, Bo-Ram;Sung, Jang Hyun;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.1
    • /
    • pp.69-78
    • /
    • 2015
  • In this study, meteorological drought indices were examined to simulate hydrological drought. SPI (Standardized Precipitation Index) and SPEI (Standardized Precipitation Evapotranspiration Index) was applied to represent meteorological drought. Further, in order to evaluate the hydrological drought, monthly total inflow and SDI (Streamflow Drought Index) was computed. Finally, the correlation between meteorological and hydrological drought indices were analyzed. As a results, in monthly correlation comparison, the correlation between meteorological drought index and monthly total inflow was highest with 0.67 in duration of 270-day. In addition, a meteorological drought index were correlated 0.72 to 0.87 with SDI. In compared to the annual extremes, the relationship between meteorological drought index and minimum monthly inflow was hardly confirmed. But SDI and SPEI showed a slightly higher correlation. There are limitation that analyze extreme hydrological drought using meteorological drought index. For the evaluation of the hydrological drought, drought index which included inflow directly is required.

Drought analysis of Cheongmicheon watershed using meteorological, agricultural and hydrological drought indices (기상학적, 농업학적, 수문학적 가뭄지수를 이용한 청미천 유역의 가뭄 분석)

  • Won, Kwang Jai;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.509-518
    • /
    • 2016
  • This study assessed drought of Cheongmicheon watershed from 1985 to 2015 according to duration. In order to quantify drought, we used meteorological and hydrological drought index. Standardized Precipitation Index(SPI) based on precipitation and Standardized Precipitation Evapotranspiration Index(SPEI) based on precipitation and evapotranspiration were applied as meteorological drought index. Palmer Drought Severity Index(PDSI) and Stream Drought Index(SDI) based on simulation of Soil and Water Assessment Tool(SWAT) model were applied as agricultural and hydrological drought index. As a result, in case average of extreme and averaged drought, 2014 and 2015 have the most vulnerable in all drought indices. Variation of drought showed different trend with regard to analysis of frequency. Also, the extreme and averaged drought have high correlation between drought indices excluding between PDSIs. However, each drought index showed different occurrence year and severity of drought Therefore, drought indices with various characteristics were used to analysis drought.

Comparison of Meteorological Drought Indices Using Past Drought Cases of Taebaek and Sokcho (태백, 속초 과거 가뭄사례를 이용한 기상학적 가뭄지수의 비교 고찰)

  • Kang, Dong Ho;Nam, Dong Ho;Kim, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.735-742
    • /
    • 2019
  • Drought is a social phenomenon in which the degree of perception varies depending on the affected factors, and is defined as various relative concepts such as meteorological drought, hydrological drought, agricultural drought, and climatological drought. In this study, a comparative analysis of meteorological drought among variously defined droughts was conducted and the applicability of the drought index was examined by comparing the actual drought cases and the results of meteorological drought index analysis. In order to compare the drought index, we used standardized Precipitation Index (SPI), China-Z Index (CZI), Modified CZI (MCZI) and Z-Score Index Respectively. Four drought indices were used for the Taebaek and Sokcho areas. The drought index was analyzed using the meteorological data from 1986 to 2015 for a duration of 3 months. As a result of the analysis, the SPI drought index was analyzed to be highly reproducible for the case of drought with past limited water series. In the case of CZI and MCZI drought indices, the number of extreme dry occurrences is similar to that of the past cases, but the reproducibility is low for the actual drought years. In the case of ZSI drought index, it is analyzed that the number of occurrences and the comparison with the past cases are inferior in reproducibility. For the meteorological drought index using precipitation, it would be effective to use the SPI drought index with the highest reproducibility and the past drought case.

Availability Assessment of Meteorological Drought Index for Agricultural Drought Estimation in Ungauged Area of Agricultural Drought Parameter (농업가뭄인자 미계측 지역의 농업가뭄 추정을 위한 기상학적 가뭄지수의 활용성 평가)

  • Park, Min Woo;Kim, Sun Joo;Kwon, Hyung Joong;Kim, Phil Shik;Kang, Seung Mook;Lee, Jae Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.127-136
    • /
    • 2017
  • The object of this study was to assess availability of meteorological drought index for agricultural dorught estimation in ungauged area of agricultural drought parameters which are reservoir water level and soil moisture. The IADI (Integrated Agricultural Drought Index) and the SPI (Standard Precipitation Index), which are the criteria for determining agricultural drought and meteorological drought, were calculated and compared. For this purpose, the droughts that occurred in the Baeksan reservoir in Gimje and the Edong reservoir in Suwon were evaluated by using the IADI and SPI drought indecies. In addition, we compared and analyzed the depth of drought based on the two drought indices. Evaluations derived form the IADI and SPI showed that the standard precipitation index tended to indicate the occurrence of drought earlier than the integrated agricultural drought index. However, the integrated agricultural drought index was better than the standard precipitation index at evaluating the severity of drought during the period of irrigation. The relationship between these two drought indices seems to be useful for decision making in the case of drought, and it is considered that more studies are needed to examine the applicability of these drought indexes.

Peak drought index analysis of cheongmicheon watershed using meteorological and hydrological drought index (기상학적 및 수문학적 가뭄지수를 이용한 청미천 유역의 첨두가뭄지수 분석)

  • Kim, Soo Hyun;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.1
    • /
    • pp.65-73
    • /
    • 2017
  • This study analyzed the peak drought severity and drought duration of the Cheongmicheon watershed from 1985 to 2015 to assess the lag time of peak drought severity between several drought indices. Standardized Precipitation Index (SPI) based on precipitation and Standardized Precipitation Evapotranspiration Index (SPEI) based on precipitation and evapotranspiration were applied as meteorological drought indices. Streamflow Drought Index (SDI) based on runoff data was applied as hydrological drought index. In case of SDI, we used Soil and Water Assessment Tool (SWAT) model for simulation of daily runoff data. As a result, the time of peak drought severity of SDI occurred after the occurrence of SPI and SPEI. The lag time for the peak drought severity, on average, between SDI and SPI was 0.59 months while SDI and SPEI was 0.79 months. As compared with SDI, the maximum delay was 2 months for both SPI and SPEI. This study results also shows that even though the rainfall events were able to cope with meteorological droughts, they were not always available to solve the hydrological droughts in the same time.

Decoupling of the Spatiotemporal Pattern of Agricultural Drought from that of Meteorological Drought in Korea (한국의 기상가뭄의 시공간 패턴으로부터 농업가뭄의 시공간 패턴 분리하기)

  • Kim, Dae-jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.140-152
    • /
    • 2017
  • The Korea Meteorological Administration (KMA) regularly publishes various drought indices. However, most of these are meteorological drought indices that are not only difficult but often inappropriate to apply to agriculture. In this study, the meteorological drought index and the agricultural drought index were calculated for the representative points of South Korea during the same period, and the differences in geographical distribution were analyzed according to the characteristics of drought. Although the overall drought patterns estimated by multiple drought indices were similar, the differences were also confirmed due to the different simulation methods depending on the character of drought. Especially, agricultural drought index (ADI) showed higher accuracy in the agricultural sector than that of meteorological drought index (e.g., SPI, PN). In addition, the drought patterns in recent years analyzed by ADI were more severe in spring and early summer compared with normal year. In autumn and winter, drought was weaker than normal year. For the recent periods, inland areas had more droughts than coastal areas. Considering the specific drought indices for the individual sectors, it will be helpful to take measures against drought according to the individual characteristics.

Probabilistic Monitoring of Effect of Meteorological Drought on Stream BOD Water Quality (기상학적 가뭄이 하천 BOD 수질에 미치는 영향의 확률론적 모니터링)

  • Jiyu Seo;Jeonghoon Lee;Hosun Lee;Sangdan Kim
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.9-19
    • /
    • 2023
  • Drought is a natural disaster that can have serious social impacts. Drought's impact ranges from water supply for humans to ecosystems, but the impact of drought on river water quality requires careful investigation. In general, drought occurs meteorologically and is classified as agricultural drought, hydrological drought, and environmental drought. In this study, the BOD environmental drought is defined using the bivariate copula joint probability distribution model between the meteorological drought index and the river BOD, and based on this, the environmental drought condition index (EDCI-BOD) was proposed. The results of examining the proposed index using past precipitation and BOD observation data showed that EDCI-BOD expressed environmental drought well in terms of river BOD water quality. In addition, by classifying the calculated EDCI-BOD into four levels, namely, 'attention', 'caution', 'alert', and 'seriousness', a practical monitoring stage for environmental drought of BOD was constructed. We further estimated the sensitivity of the stream BOD to meteorological drought, and through this, we could identify the stream section in which the stream BOD responded relatively more sensitively to the occurrence of meteorological drought. The results of this study are expected to provide information necessary for river BOD management in the event of meteorological droughts.

Development & Evaluation of Real-time Ensemble Drought Prediction System (실시간 앙상블 가뭄전망정보 생산 체계 구축 및 평가)

  • Bae, Deg-Hyo;Ahn, Joong-Bae;Kim, Hyun-Kyung;Kim, Heon-Ae;Son, Kyung-Hwan;Cho, Se-Ra;Jung, Ui-Seok
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.113-121
    • /
    • 2013
  • The objective of this study is to develop and evaluate the system to produce the real-time ensemble drought prediction data. Ensemble drought prediction consists of 3 processes (meteorological outlook using the multi-initial conditions, hydrological analysis and drought index calculation) therefore, more processing time and data is required than that of single member. For ensemble drought prediction, data process time is optimized and hardware of existing system is upgraded. Ensemble drought data is estimated for year 2012 and to evaluate the accuracy of drought prediction data by using ROC (Relative Operating Characteristics) analysis. We obtained 5 ensembles as optimal number and predicted drought condition for every tenth day i.e. 5th, 15th and 25th of each month. The drought indices used are SPI (Standard Precipitation Index), SRI (Standard Runoff Index), SSI (Standard Soil moisture Index). Drought conditions were determined based on results obtained for each ensemble member. Overall the results showed higher accuracy using ensemble members as compared to single. The ROC score of SRI and SSI showed significant improvement in drought period however SPI was higher in the demise period. The proposed ensemble drought prediction system can be contributed to drought forecasting techniques in Korea.

Classifying meteorological drought severity using a hidden Markov Bayesian classifier

  • Sattar, Muhammad Nouman;Park, Dong-Hyeok;Kwon, Hyun-Han;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.150-150
    • /
    • 2019
  • The development of prolong and severe drought can directly impact on the environment, agriculture, economics and society of country. A lot of efforts have been made across worldwide in the planning, monitoring and mitigation of drought. Currently, different drought indices such as the Palmer Drought Severity Index (PDSI), Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI) are developed and most commonly used to monitor drought characteristics quantitatively. However, it will be very meaningful and essential to develop a more effective technique for assessment and monitoring of onset and end of drought. Therefore, in this study, the hidden Markov Bayesian classifier (MBC) was employed for the assessment of onset and end of meteorological drought classes. The results showed that the probabilities of different classes based on the MBC were quite suitable and can be employed to estimate onset and end of each class for meteorological droughts. The classification results of MBC were compared with SPI and with past studies which proved that the MBC was able to account accuracy in determining the accurate drought classes. For more performance evaluation of classification results confusion matrix was used to find accuracy and precision in predicting the classes and their results are also appropriate. The overall results indicate that the MBC was effective in predicating the onset and end of drought events and can utilized for monitoring and management of short-term drought risk.

  • PDF

Combined analysis of meteorological and hydrological drought for hydrological drought prediction and early response - Focussing on the 2022-23 drought in the Jeollanam-do - (수문학적 가뭄 예측과 조기대응을 위한 기상-수문학적 가뭄의 연계분석 - 2022~23 전남지역 가뭄을 대상으로)

  • Jeong, Minsu;Hong, Seok-Jae;Kim, Young-Jun;Yoon, Hyeon-Cheol;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.195-207
    • /
    • 2024
  • This study selected major drought events that occurred in the Jeonnam region from 1991 to 2023, examining both meteorological and hydrological drought occurrence mechanisms. The daily drought index was calculated using rainfall and dam storage as input data, and the drought propagation characteristics from meteorological drought to hydrological drought were analyzed. The characteristics of the 2022-23 drought, which recently occurred in the Jeonnam region and caused serious damage, were evaluated. Compared to historical droughts, the duration of the hydrological drought for 2022-2023 lasted 334 days, the second longest after 2017-2018, the drought severity was evaluated as the most severe at -1.76. As a result of a linked analysis of SPI (StandQardized Precipitation Index), and SRSI (Standardized Reservoir Storage Index), it is possible to suggest a proactive utilization for SPI(6) to respond to hydrological drought. Furthermore, by confirming the similarity between SRSI and SPI(12) in long-term drought monitoring, the applicability of SPI(12) to hydrological drought monitoring in ungauged basins was also confirmed. Through this study, it was confirmed that the long-term dryness that occurs during the summer rainy season can transition into a serious level of hydrological drought. Therefore, for preemptive drought response, it is necessary to use real-time monitoring results of various drought indices and understand the propagation phenomenon from meteorological-agricultural-hydrological drought to secure a sufficient drought response period.