• Title/Summary/Keyword: Meteorological Variable Prediction

Search Result 37, Processing Time 0.027 seconds

Development of Prediction Model for Renewable Energy Environmental Variables Based on Kriging Techniques (크리깅 기법 기반 재생에너지 환경변수 예측 모형 개발)

  • Choy, Youngdo;Baek, Jahyun;Jeon, Dong-Hoon;Park, Sang-Ho;Choi, Soonho;Kim, Yeojin;Hur, Jin
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.223-228
    • /
    • 2019
  • In order to integrate large amounts of variable generation resources such as wind and solar reliably into power grids, accurate renewable energy forecasting is necessary. Since renewable energy generation output is heavily influenced by environmental variables, accurate forecasting of power generation requires meteorological data at the point where the plant is located. Therefore, a spatial approach is required to predict the meteorological variables at the interesting points. In this paper, we propose the meteorological variable prediction model for enhancing renewable generation output forecasting model. The proposed model is implemented by three geostatistical techniques: Ordinary kriging, Universal kriging and Co-kriging.

Development of an Expert Technique and Program to Predict the Pollution of Outdoor Insulators (옥외 절연물의 오손도 예측 기법 및 프로그램 개발)

  • Kim, Jae-Hoon;Kim, Ju-Han;Han, Sang-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.28-34
    • /
    • 2007
  • Recently, with the rapid growth of industry, environmental condition became worse. In addition to outdoor insulators in seashore are polluted due to salty wind. Also this pollution causes the flashover and failure of electric equipments. Especially the salt contaminant is one of the most representative pollutants, and known as the main source of the accident by contamination. As well known, the pollution has a close relation with meteorological factors such as wind velocity, wind direction, temperature, relative humidity, precipitation and so on. In this paper we have statistically analyzed the correlation between the pollution and the meteorological factors. The multiple regression analysis was used for the statistical analysis; daily measured equivalent salt deposit density(dependent variable) and the weather condition data(independent variable) were used. Also we have developed an expert program to predict the pollution deposit. A new prediction system using this program called SPPP(salt pollution prediction program) has been used to model accurately the relationship between ESDD with the meteorological factors.

Assessment of the Prediction Derived from Larger Ensemble Size and Different Initial Dates in GloSea6 Hindcast (기상청 기후예측시스템(GloSea6) 과거기후 예측장의 앙상블 확대와 초기시간 변화에 따른 예측 특성 분석)

  • Kim, Ji-Yeong;Park, Yeon-Hee;Ji, Heesook;Hyun, Yu-Kyung;Lee, Johan
    • Atmosphere
    • /
    • v.32 no.4
    • /
    • pp.367-379
    • /
    • 2022
  • In this paper, the evaluation of the performance of Korea Meteorological Administratio (KMA) Global Seasonal forecasting system version 6 (GloSea6) is presented by assessing the effects of larger ensemble size and carrying out the test using different initial conditions for hindcast in sub-seasonal to seasonal scales. The number of ensemble members increases from 3 to 7. The Ratio of Predictable Components (RPC) approaches the appropriate signal magnitude with increase of ensemble size. The improvement of annual variability is shown for all basic variables mainly in mid-high latitude. Over the East Asia region, there are enhancements especially in 500 hPa geopotential height and 850 hPa wind fields. It reveals possibility to improve the performance of East Asian monsoon. Also, the reliability tends to become better as the ensemble size increases in summer than winter. To assess the effects of using different initial conditions, the area-mean values of normalized bias and correlation coefficients are compared for each basic variable for hindcast according to the four initial dates. The results have better performance when the initial date closest to the forecasting time is used in summer. On the seasonal scale, it is better to use four initial dates, where the maximum size of the ensemble increases to 672, mainly in winter. As the use of larger ensemble size, therefore, it is most efficient to use two initial dates for 60-days prediction and four initial dates for 6-months prediction, similar to the current Time-Lagged ensemble method.

Development of 12-month Ensemble Prediction System Using PNU CGCM V1.1 (PNU CGCM V1.1을 이용한 12개월 앙상블 예측 시스템의 개발)

  • Ahn, Joong-Bae;Lee, Su-Bong;Ryoo, Sang-Boom
    • Atmosphere
    • /
    • v.22 no.4
    • /
    • pp.455-464
    • /
    • 2012
  • This study investigates a 12 month-lead predictability of PNU Coupled General Circulation Model (CGCM) V1.1 hindcast, for which an oceanic data assimilated initialization is used to generate ocean initial condition. The CGCM, a participant model of APEC Climate Center (APCC) long-lead multi-model ensemble system, has been initialized at each and every month and performed 12-month-lead hindcast for each month during 1980 to 2011. The 12-month-lead hindcast consisted of 2-5 ensembles and this study verified the ensemble averaged hindcast. As for the sea-surface temperature concerns, it remained high level of confidence especially over the tropical Pacific and the mid-latitude central Pacific with slight declining of temporal correlation coefficients (TCC) as lead month increased. The CGCM revealed trustworthy ENSO prediction skills in most of hindcasts, in particular. For atmospheric variables, like air temperature, precipitation, and geopotential height at 500hPa, reliable prediction results have been shown during entire lead time in most of domain, particularly over the equatorial region. Though the TCCs of hindcasted precipitation are lower than other variables, a skillful precipitation forecasts is also shown over highly variable regions such as ITCZ. This study also revealed that there are seasonal and regional dependencies on predictability for each variable and lead.

Temporal and Spatial correlation of Meteorological Data in Sumjin River and Yongsan River Basins (섬진강 및 영산강 유역 기상자료의 시.공간적 상관성)

  • 김기성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.6
    • /
    • pp.44-53
    • /
    • 1999
  • The statistical characteristics of the factors related to the daily rainfall prediction model are analyzed . Records of daily precipitation, mean air temperature, relative humidity , dew-point temperature and air pressure from 1973∼1998 at 8 meteorological sttions in south-western part of Korea were used. 1. Serial correlatino of daily precipitaiton was significant with the lag less than 1 day. But , that of other variables were large enough until 10 day lag. 2. Crosscorrelation of air temperature, relative humidity , dew-point temperature showed similar distribution wiht the basin contrours and the others were different. 3. There were significant correlation between the meteorological variables and precipitation preceded more than 2 days. 4. Daily preciption of each station were treated as a truncated continuous random variable and the annual periodic components, mean and standard deviation were estimated for each day. 5. All of the results could be considered to select the input variables of regression model or neural network model for the prediction of daily precipitation and to construct the stochastic model of daily precipitation.

  • PDF

Development of Garlic & Onion Yield Prediction Model on Major Cultivation Regions Considering MODIS NDVI and Meteorological Elements (MODIS NDVI와 기상요인을 고려한 마늘·양파 주산단지 단수예측 모형 개발)

  • Na, Sang-il;Park, Chan-won;So, Kyu-ho;Park, Jae-moon;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.647-659
    • /
    • 2017
  • Garlic and onion are grown in major cultivation regions that depend on the crop condition and the meteorology of the production area. Therefore, when yields are to be predicted, it is reasonable to use a statistical model in which both the crop and the meteorological elements are considered. In this paper, using a multiple linear regression model, we predicted garlic and onion yields in major cultivation regions. We used the MODIS NDVI that reflects the crop conditions, and six meteorological elements for 7 major cultivation regions from 2006 to 2015. The multiple linear regression models were suggested by using stepwise regression in the extraction of independent variables. As a result, the MODIS NDVI in February was chosen the significant independent variable of the garlic and onion yield prediction model. In the case of meteorological elements, the garlic yield prediction model were the mean temperature (March), the rainfall (November, March), the relative humidity (April), and the duration time of sunshine (April, May). Also, the rainfall (November), the duration time of sunshine (January), the relative humidity (April), and the minimum temperature (June) were chosen among the variables as the significant meteorological elements of the onion yield prediction model. MODIS NDVI and meteorological elements in the model explain 84.4%, 75.9% of the garlic and onion with a root mean square error (RMSE) of 42.57 kg/10a, 340.29 kg/10a. These lead to the result that the characteristics of variations in garlic and onion growth according to MODIS NDVI and other meteorological elements were well reflected in the model.

Global Ocean Data Assimilation and Prediction System 2 in KMA: Operational System and Improvements (기상청 전지구 해양자료동화시스템 2(GODAPS2): 운영체계 및 개선사항)

  • Hyeong-Sik Park;Johan Lee;Sang-Min Lee;Seung-On Hwang;Kyung-On Boo
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.423-440
    • /
    • 2023
  • The updated version of Global Ocean Data Assimilation and Prediction System (GODAPS) in the NIMS/KMA (National Institute of Meteorological Sciences/Korea Meteorological Administration), which has been in operation since December 2021, is being introduced. This technical note on GODAPS2 describes main progress and updates to the previous version of GODAPS, a software tool for the operating system, and its improvements. GODAPS2 is based on Forecasting Ocean Assimilation Model (FOAM) vn14.1, instead of previous version, FOAM vn13. The southern limit of the model domain has been extended from 77°S to 85°S, allowing the modelling of the circulation under ice shelves in Antarctica. The adoption of non-linear free surface and variable volume layers, the update of vertical mixing parameterization, and the adjustment of isopycnal diffusion coefficient for the ocean model decrease the model biases. For the sea-ice model, four vertical ice layers and an additional snow layer on top of the ice layers are being used instead of previous single ice and snow layers. The changes for data assimilation include the updated treatment for background error covariance, a newly added bias scheme combined with observation bias, the application of a new bias correction for sea level anomaly, an extension of the assimilation window from 1 day to 2 days, and separate assimilations for ocean and sea-ice. For comparison, we present the difference between GODAPS and GODAPS2. The verification results show that GODAPS2 yields an overall improved simulation compared to GODAPS.

A Study on the Development of Flight Prediction Model and Rules for Military Aircraft Using Data Mining Techniques (데이터 마이닝 기법을 활용한 군용 항공기 비행 예측모형 및 비행규칙 도출 연구)

  • Yu, Kyoung Yul;Moon, Young Joo;Jeong, Dae Yul
    • The Journal of Information Systems
    • /
    • v.31 no.3
    • /
    • pp.177-195
    • /
    • 2022
  • Purpose This paper aims to prepare a full operational readiness by establishing an optimal flight plan considering the weather conditions in order to effectively perform the mission and operation of military aircraft. This paper suggests a flight prediction model and rules by analyzing the correlation between flight implementation and cancellation according to weather conditions by using big data collected from historical flight information of military aircraft supplied by Korean manufacturers and meteorological information from the Korea Meteorological Administration. In addition, by deriving flight rules according to weather information, it was possible to discover an efficient flight schedule establishment method in consideration of weather information. Design/methodology/approach This study is an analytic study using data mining techniques based on flight historical data of 44,558 flights of military aircraft accumulated by the Republic of Korea Air Force for a total of 36 months from January 2013 to December 2015 and meteorological information provided by the Korea Meteorological Administration. Four steps were taken to develop optimal flight prediction models and to derive rules for flight implementation and cancellation. First, a total of 10 independent variables and one dependent variable were used to develop the optimal model for flight implementation according to weather condition. Second, optimal flight prediction models were derived using algorithms such as logistics regression, Adaboost, KNN, Random forest and LightGBM, which are data mining techniques. Third, we collected the opinions of military aircraft pilots who have more than 25 years experience and evaluated importance level about independent variables using Python heatmap to develop flight implementation and cancellation rules according to weather conditions. Finally, the decision tree model was constructed, and the flight rules were derived to see how the weather conditions at each airport affect the implementation and cancellation of the flight. Findings Based on historical flight information of military aircraft and weather information of flight zone. We developed flight prediction model using data mining techniques. As a result of optimal flight prediction model development for each airbase, it was confirmed that the LightGBM algorithm had the best prediction rate in terms of recall rate. Each flight rules were checked according to the weather condition, and it was confirmed that precipitation, humidity, and the total cloud had a significant effect on flight cancellation. Whereas, the effect of visibility was found to be relatively insignificant. When a flight schedule was established, the rules will provide some insight to decide flight training more systematically and effectively.

Effect of Model Domain on Summer Precipitation Predictions over the Korean Peninsula in WRF Model (WRF 모형에서 한반도 여름철 강수 예측에 모의영역이 미치는 영향)

  • Kim, Hyeong-Gyu;Lee, Hye-Young;Kim, Joowan;Lee, Seungwoo;Boo, Kyung On;Lee, Song-Ee
    • Atmosphere
    • /
    • v.31 no.1
    • /
    • pp.17-28
    • /
    • 2021
  • We investigated the impact of domain size on the simulated summer precipitation over the Korean Peninsula using the Weather Research and Forecasting (WRF) model. Two different domains are integrated up to 72-hours from 29 June 2017 to 28 July 2017 when the Changma front is active. The domain sizes are adopted from previous RDAPS (Regional Data Assimilation and Prediction System) and current LDAPS (Local Data Assimilation and Prediction System) operated by the Korea Meteorological Administration, while other model configurations are fixed identically. We found that the larger domain size showed better prediction skills, especially in precipitation forecast performance. This performance improvement is particularly noticeable over the central region of the Korean Peninsula. Comparisons of physical aspects of each variable revealed that the inflow of moisture flux from the East China Sea was well reproduced in the experiment with a large model domain due to a more realistic North Pacific high compared to the small domain experiment. These results suggest that the North Pacific anticyclone could be an important factor for the precipitation forecast during the summer-time over the Korean Peninsula.

Bayesian Typhoon Track Prediction Using Wind Vector Data

  • Han, Minkyu;Lee, Jaeyong
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.3
    • /
    • pp.241-253
    • /
    • 2015
  • In this paper we predict the track of typhoons using a Bayesian principal component regression model based on wind field data. Data is obtained at each time point and we applied the Bayesian principal component regression model to conduct the track prediction based on the time point. Based on regression model, we applied to variable selection prior and two kinds of prior distribution; normal and Laplace distribution. We show prediction results based on Bayesian Model Averaging (BMA) estimator and Median Probability Model (MPM) estimator. We analysis 8 typhoons in 2006 using data obtained from previous 6 years (2000-2005). We compare our prediction results with a moving-nest typhoon model (MTM) proposed by the Korea Meteorological Administration. We posit that is possible to predict the track of a typhoon accurately using only a statistical model and without a dynamical model.