• Title/Summary/Keyword: Meteorological Sensor

검색결과 177건 처리시간 0.026초

Design of Client/Server System for Meteorological Map Service Using Mobile Phone Sensor

  • Choi, Jin-Oh
    • Journal of information and communication convergence engineering
    • /
    • 제7권4호
    • /
    • pp.525-529
    • /
    • 2009
  • On the limited urban area meteorological data are hard to be collected because of the cost problem. The facilities collecting the data require high installment cost. Recently, the sensor network technique comes to the fore as a solution. Furthermore a mobile phone also becomes to be recognized as a sensor. This paper studies an application to service the meteorological map using mobile phone sensor. A design results for system implementation are introduced in this paper.

센스 네트워크 응용 : 휴대폰 센스를 이용한 기상 지도 서비스 (Sensor Network Application : Meteorological Map Service Using Mobile Phone Sensor)

  • 최진오
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.203-206
    • /
    • 2009
  • 기상 데이터는 측정 장소의 산재로 인하여 매우 성긴 형태의 값으로 수집된다. 따라서 특정 건물이나 지하철 등 제한된 도시 공간에서 정밀한 기상 정보를 수집하는 것은 별도의 측정 장비를 설치해야 하는 비용 문제를 야기한다. 이 논문에서는 최근 관심을 끌고 있는 센스 네트워크 기술을 활용하여 휴대폰을 센서로 기상 지도 생성 및 서비스 응용 기법에 대하여 고찰한다.

  • PDF

COMS 특별세션 (THERMAL CONTROL DESIGN FOR COMS)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Kim, Sung-Hoon;Yang, Koon-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.199-202
    • /
    • 2007
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication, ocean observation and meteorological observation. Conventional thermal control design, using MLI (Multi Layer Insulation), OSR (Optical Solar Reflector), heater and heat pipe, is utilized. Ka-band components are installed on South wall, while other equipment for sensors are installed on the opposite side, North wall. High dissipating communication units are located on external (surface) heat pipe and are covered by internal insulation blankets to decouple them from the rest of the satellite. External satellite walls are covered by MLI or OSR for insulation from space and for rejection internal heat to space. The ocean and meteorological sensors are installed on optical benches on the top floor to decouple thermally from the satellite. Single solar array wing is adopted in order to secure clear field of view of radiant cooler of IR meteorological sensor. This paper presents principles of thermal control design for the COMS.

  • PDF

KEOP-2007 라디오존데 관측자료를 이용한 장마 특성 분석: Part I. 라디오존데 관측 자료 평가 분석 (The Analysis of Changma Structure using Radiosonde Observational Data from KEOP-2007: Part I. the Assessment of the Radiosonde Data)

  • 김기훈;김연희;장동언
    • 대기
    • /
    • 제19권2호
    • /
    • pp.213-226
    • /
    • 2009
  • In order to investigate the characteristics of Changma over the Korean peninsula, KEOP-2007 IOP (Intensive Observing Period) was conducted from 15 June 2007 to 15 July 2007. KEOP-2007 IOP is high spatial and temporal radiosonde observations (RAOB) which consisted of three special stations (Munsan, Haenam, and Ieodo) from National Institute of Meteorological Research, five operational stations (Sokcho, Baengnyeongdo, Pohang, Heuksando, and Gosan) from Korea Meteorological Administration (KMA), and two operational stations (Osan and Gwangju) from Korean Air Force (KAF) using four different types of radiosonde sensors. The error statistics of the sensor of radiosonde were investigated using quality control check. The minimum and maximum error frequency appears at the sensor of RS92-SGP and RS1524L respectively. The error frequency of DFM-06 tends to increase below 200 hPa but RS80-15L and RS1524L show vice versa. Especially, the error frequency of RS1524L tends to increase rapidly over 200 hPa. Systematic biases of radiosonde show warm biases in case of temperature and dry biases in case of relative humidity compared with ECMWF (European Center for Medium-Range Weather Forecast) analysis data and precipitable water vapor from GPS. The maximum and minimum values of systematic bias appear at the sensor of DFM-06 and RS92-SGP in case of temperature and RS80-15L and DFM-06 in case of relative humidity. The systematic warm and dry biases at all sensors tend to increase during daytime than nighttime because air temperature around sensor increases from the solar heating during daytime. Systematic biases of radiosonde are affected by the sensor type and the height of the sun but random errors are more correlated with the moisture conditions at each observation station.

휴대폰 센서를 이용한 기상정보 서비스 시스템의 설계 (Design of Meteorological Map Service System Using Mobile Phone Sensor)

  • 최진오
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.1077-1080
    • /
    • 2009
  • 기상 데이터는 시설 설치의 비용 문제로 인하여 제한된 도시 공간에서 정밀한 정보를 수집되기 어렵다. 따라서 이 논문에서는 최근 관심을 끌고 있는 센스 네트워크 기술을 활용하여 휴대폰을 센서로 활용하는 기상 지도 생성 및 서비스 응용 기법에 대하여 고찰한다. 그리고 시스템 구현을 위한 디자인 내용을 소개한다.

  • PDF

WISE 복합기상센서 관측 자료 품질관리시스템 (The WISE Quality Control System for Integrated Meteorological Sensor Data)

  • 채정훈;박문수;최영진
    • 대기
    • /
    • 제24권3호
    • /
    • pp.445-456
    • /
    • 2014
  • A real-time quality control system for meteorological data (air temperature, air pressure, relative humidity, wind speed, wind direction, and precipitation) measured by an integrated meteorological sensor has been developed based on comparison of quality control procedures for meteorological data that were developed by the World Meteorological Organization and the Korea Meteorological Administration (KMA), using time series and statistical analysis of a 12-year meteorological data set observed from 2000 to 2011 at the Incheon site in Korea. The quality control system includes missing value, physical limit, step, internal consistency, persistence, and climate range tests. Flags indicating good, doubtful, erroneous, not checked, or missing values were added to the raw data after the quality control procedure. The climate range test was applied to the monthly data for air temperature and pressure, and its threshold values were modified from ${\pm}2{\sigma}$ and ${\pm}3{\sigma}$ to ${\pm}3{\sigma}$ and ${\pm}6{\sigma}$, respectively, in order to consider extreme phenomena such as heat waves and typhoons. In addition, the threshold values of the step test for air temperature, air pressure, relative humidity, and wind speed were modified to $0.7^{\circ}C$, 0.4 hPa, 5.9%, and $4.6m\;s^{-1}$, respectively, through standard deviation analysis of step difference according to their averaging period. The modified quality control system was applied to the meteorological data observed by the Weather Information Service Engine in March 2014 and exhibited improved performance compared to the KMA procedures.

확장 가능한 모바일 기상 정보 서비스를 위한 센서 시스템의 설계 (The Design of Sensor System for Scalable Mobile Meteorological Information Services)

  • 최진오
    • 한국정보통신학회논문지
    • /
    • 제15권6호
    • /
    • pp.1327-1332
    • /
    • 2011
  • 모바일 기상 정보 서비스에서 동네 수준 이상의 정밀한 정보를 제공하기 위해서는 기존의 센서를 확장하여야 한다. 기존 센서를 추가 설치하는 것은 큰 비용문제 때문에 받아들일 수 없기 때문이다. 이 논문은 모바일 기상 정보 서비스 환경을 구축할 수 있는 시스템 구조를 제시하고 확장 가능한 센서로서 휴대폰, 센서 네트워크, 그리고 대중 교통차량을 제안한다. 제안한 확장 센서들을 비교 분석하여 각각의 장단점을 평가해 보인다. 그리고 이 시스템에서 서버에 수집되는 센싱 데이터의 특성을 고려하여 효율적인 질의 지원을 위한 데이터 처리 기법을 소개한다. 제안하는 데이터 처리 기법은 수많은 센서들로부터 수집된 정보들을 논리적 단위로 압축하여 데이터 용량을 줄이면서도 서비스 품질을 유지할 수 있는 장점을 지닌다.

드론을 활용한 IoT기반의 소형센서 관측시스템 개발 가능성에 대한 소고 (A Study on Development of Small Sensor Observation System Based on IoT Using Drone)

  • 안요섭;문종섭;김백조;이우균;차성은
    • 한국환경과학회지
    • /
    • 제27권11호
    • /
    • pp.1155-1167
    • /
    • 2018
  • We developed a small sensor observation system (SSOS) at a relatively low cost to observe the atmospheric boundary layer. The accuracy of the SSOS sensor was compared with that of the automatic weather system (AWS) and meteorological tower at the Korea Meteorological Administration (KMA). Comparisons between SSOS sensors and KMA sensors were carried out by dividing into ground and lower atmosphere. As a result of comparing the raw data of the SSOS sensor with the raw data of AWS and the observation tower by applying the root-mean-square-error to the error, the corresponding values were within the error tolerance range (KMA meteorological reference point: humidity ${\pm}5%$, atmospheric pressure ${\pm}0.5hPa$, temperature ${\pm}0.5^{\circ}C$. In the case of humidity, even if the altitude changed, it tends to be underestimated. In the case of temperature, when the altitude rose to 40 m above the ground, the value changed from underestimation to overestimation. However, it can be confirmed that the errors are within the KMA's permissible range after correction.

위성 광학관측 가능 기상상태 판단을 위한 Boltwood 구름센서 성능 시험 (Performance Test of the Boltwood Cloud Sensor for the Meteorological Condition of Optical Satellite Observation)

  • 배영호;윤요나;조중현;문홍규;최영준;임홍서;박영식;박선엽;박장현;최진;김명진;김지혜
    • 한국위성정보통신학회논문지
    • /
    • 제8권3호
    • /
    • pp.32-40
    • /
    • 2013
  • Boltwood 구름센서는 구름으로부터 복사되는 적외선을 감지하여 구름의 유무와 많고 적음을 판별할 수 있는 기상센서의 한 종류이다. 이 구름센서는 한국천문연구원이 진행하고 있는 국가현안과제의 일환인 우주물체 전자광학 감시체계 시스템(OWL, Optical Wide-field patroL)에 사용될 계획이다. 실제 시스템 적용에 앞서, Boltwood 구름센서를 충북대학교 천문대에 설치, 약 2주간 구름센서의 구름감지 성능 시험을 위한 관측을 진행하였다. 구름센서의 성능과 비교할 대상으로 충북대학교 천문대에 현재 설치, 운영 중인 구름량 측정을 위한 CCD 관측시스템을 이용하였다. 성능 테스트 결과, 하늘과 지상의 온도차이와 측광 자료의 별 개수간 명확한 상관관계가 도출되지 못했다. 그 원인으로는 시험 환경상의 문제와 Boltwood 구름센서의 내부 알고리즘 및 하드웨어에 대한 정보공개가 제한 때문인 것으로 판단된다. 이 논문에서는 Boltwood 구름센서와 CCD 관측시스템의 구름지수를 비교, 분석한 과정과 그 상세 결과를 제시하고자 한다.

레이더기반 다중센서활용 강수추정기술의 개발 (Development of Radar-Based Multi-Sensor Quantitative Precipitation Estimation Technique)

  • 이재경;김지현;박혜숙;석미경
    • 대기
    • /
    • 제24권3호
    • /
    • pp.433-444
    • /
    • 2014
  • Although the Radar-AWS Rainrate (RAR) calculation system operated by Korea Meteorological Administration estimated precipitation using 2-dimensional composite components of single polarization radars, this system has several limitations in estimating the precipitation accurately. To to overcome limitations of the RAR system, the Korea Meteorological Administration developed and operated the RMQ (Radar-based Multi-sensor Quantitative Precipitation Estimation) system, the improved version of NMQ (National Mosaic and Multi-sensor Quantitative Precipitation Estimation) system of NSSL (National Severe Storms Laboratory) for the Korean Peninsula. This study introduced the RMQ system domestically for the first time and verified the precipitation estimation performance of the RMQ system. The RMQ system consists of 4 main parts as the process of handling the single radar data, merging 3D reflectivity, QPE, and displaying result images. The first process (handling of the single radar data) has the pre-process of a radar data (transformation of data format and quality control), the production of a vertical profile of reflectivity and the correction of bright-band, and the conduction of hydrid scan reflectivity. The next process (merger of 3D reflectivity) produces the 3D composite reflectivity field after correcting the quality controlled single radar reflectivity. The QPE process classifies the precipitation types using multi-sensor information and estimates quantitative precipitation using several Z-R relationships which are proper for precipitation types. This process also corrects the precipitation using the AWS position with local gauge correction technique. The last process displays the final results transformed into images in the web-site. This study also estimated the accuracy of the RMQ system with five events in 2012 summer season and compared the results of the RAR (Radar-AWS Rainrate) and RMQ systems. The RMQ system ($2.36mm\;hr^{-1}$ in RMSE on average) is superior to the RAR system ($8.33mm\;hr^{-1}$ in RMSE) and improved by 73.25% in RMSE and 25.56% in correlation coefficient on average. The precipitation composite field images produced by the RMQ system are almost identical to the AWS (Automatic Weather Statioin) images. Therefore, the RMQ system has contributed to improve the accuracy of precipitation estimation using weather radars and operation of the RMQ system in the work field in future enables to cope with the extreme weather conditions actively.