• Title/Summary/Keyword: Meteorological Prediction Data

Search Result 612, Processing Time 0.022 seconds

Development of Ground-based GNSS Data Assimilation System for KIM and their Impacts (KIM을 위한 지상 기반 GNSS 자료 동화 체계 개발 및 효과)

  • Han, Hyun-Jun;Kang, Jeon-Ho;Kwon, In-Hyuk
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.191-206
    • /
    • 2022
  • Assimilation trials were performed using the Korea Institute of Atmospheric Prediction Systems (KIAPS) Korea Integrated Model (KIM) semi-operational forecast system to assess the impact of ground-based Global Navigation Satellite System (GNSS) Zenith Total Delay (ZTD) on forecast. To use the optimal observation in data assimilation of KIM forecast system, in this study, the ZTD observation were pre-processed. It involves the bias correction using long term background of KIM, the quality control based on background and the thinning of ZTD data. Also, to give the effect of observation directly to data assimilation, the observation operator which include non-linear model, tangent linear model, adjoint model, and jacobian code was developed and verified. As a result, impact of ZTD observation in both analysis and forecast was neutral or slightly positive on most meteorological variables, but positive on geopotential height. In addition, ZTD observations contributed to the improvement on precipitation of KIM forecast, specially over 5 mm/day precipitation intensity.

Seasonal Forecasting of Tropical Storms using GloSea5 Hindcast (기후예측시스템(GloSea5) 열대성저기압 계절예측 특성)

  • Lee, Sang-Min;Lee, Jo-Han;Ko, A-Reum;Hyun, Yu-Kyung;Kim, YoonJae
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.209-220
    • /
    • 2020
  • Seasonal predictability and variability of tropical storms (TCs) simulated in the Global Seasonal Forecast System version 5 (GloSea5) of the Korea Meteorological Administration (KMA) is assessed in Northern Hemisphere in 1996~2009. In the KMA, the GloSea5-Global Atmosphere version 3.0 (GloSea5-GA3) that was previously operated was switched to the GloSea5-Global Coupled version 2.0 (GloSea5-GC2) with data assimilation system since May 2016. In this study, frequency, track, duration, and strength of the TCs in the North Indian Ocean, Western Pacific, Eastern Pacific, and North Atlantic regions derived from the GloSea5-GC2 and GloSea5-GA3 are examined against the best track data during the research period. In general, the GloSea5 shows a good skill for the prediction of seasonally averaged number of the TCs in the Eastern and Western Pacific regions, but underestimation of those in the North Atlantic region. Both the GloSea5-GA3 and GC2 are not able to predict the recurvature of the TCs in the North Western Pacific Ocean (NWPO), which implies that there is no skill for the prediction of landfalls in the Korean peninsula. The GloSea5-GC2 has higher skills for predictability and variability of the TCs than the GloSea5-GA3, although continuous improvements in the operational system for seasonal forecast are still necessary to simulate TCs more realistically in the future.

Regional Extension of the Neural Network Model for Storm Surge Prediction Using Cluster Analysis (군집분석을 이용한 국지해일모델 지역확장)

  • Lee, Da-Un;Seo, Jang-Won;Youn, Yong-Hoon
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.259-267
    • /
    • 2006
  • In the present study, the neural network (NN) model with cluster analysis method was developed to predict storm surge in the whole Korean coastal regions with special focuses on the regional extension. The model used in this study is NN model for each cluster (CL-NN) with the cluster analysis. In order to find the optimal clustering of the stations, agglomerative method among hierarchical clustering methods was used. Various stations were clustered each other according to the centroid-linkage criterion and the cluster analysis should stop when the distances between merged groups exceed any criterion. Finally the CL-NN can be constructed for predicting storm surge in the cluster regions. To validate model results, predicted sea level value from CL-NN model was compared with that of conventional harmonic analysis (HA) and of the NN model in each region. The forecast values from NN and CL-NN models show more accuracy with observed data than that of HA. Especially the statistics analysis such as RMSE and correlation coefficient shows little differences between CL-NN and NN model results. These results show that cluster analysis and CL-NN model can be applied in the regional storm surge prediction and developed forecast system.

Analysis of Meteorological Factors on Yield of Chinese Cabbage and Radish in Winter Cropping System (월동작형 배추와 무의 생산량에 영향을 미치는 기상요인 분석)

  • Kim, In-Gyum;Park, Ki-Jun;Kim, Baek-Jo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.2
    • /
    • pp.59-66
    • /
    • 2013
  • Among many factors, especially meteorological conditions can impact agricultural productivities. This study was conducted to analyze the relationships between crop yield and meteorological factors. We collected meteorological data (i.e., temperature and precipitation) from the Automated Weather System (AWS) of Korea Meteorological Administration (KMA) and the yield data of Chinese cabbage and Radish from local Nonghyup (NCAF:National Agricultural Cooperative Federation) and Farmers' Corporate Association. The agricultural data were classified into two groups. These groups are comprised of the farmers who produced a crop under 30 kg per $3.3m^2$ and over 30k g per $3.3m^2$ respectively. The daily meteorological data were calculated from the average value for ten days. Based on the regression analysis, we concluded that the yield of Chinese cabbage (Haenam) was related to average temperature, minimum temperature, precipitation, and number of days with precipitation, whereas that of Radish (Jeju) was related to average temperature, maximum temperature, and minimum temperature. The result suggests that these meteorological data can be used more effectively for the prediction of crop yield.

Wildfire Risk Index Using NWP and Satellite Data: Its Development and Application to 2019 Kangwon Wildfires (기상예보모델자료와 위성자료를 이용한 산불위험지수 개발 및 2019년 4월 강원 산불 사례에의 적용)

  • Kim, Yeong-Ho;Kong, In-Hak;Chung, Chu-Yong;Shin, Inchul;Cheong, Seonghoon;Jung, Won-Chan;Mo, Hee-Sook;Kim, Sang-Il;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.337-342
    • /
    • 2019
  • This letter describes the development of WRI (Wildfire Risk Index) using GDAPS (Global Data Assimilation and Prediction System) and satellite data, and its application to the Goseong-Sokcho and Gangneung-Donghae wildfires in April 4, 2019. We made sure that the proposed WRI represented the change of wildfire risk of around March 19 and April 4 very well. Our approach can be a viable option for wildfire risk monitoring, and future works will be necessary for the utilization of GK-2A products and the coupling with the wildfire prediction model of the Korea Forest Service.

Prediction of Agricultural Wind and Gust Using Local Ensemble Prediction System (국지앙상블시스템을 활용한 농경지 바람 및 강풍 예측)

  • Jung Hyuk Kang;Geon-Hu Kim;Kyu Rang Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.2
    • /
    • pp.115-125
    • /
    • 2024
  • Wind is a meteorological factor that has a significant impact on agriculture. Gust cause damage such as fruit drop and damage to facilities. In this study, low-altitude wind speed prediction was performed by applying physical models to Local Ensemble Prediction System (LENS). Logarithmic Law (LOG) and Power Law (POW) were used as the physical models, and Korea Ministry of Environment indicators and Moderate Resolution Imaging Spectroradiometer (MODIS) data were applied as indicator variables. We collected and verified wind and gust data at 3m altitude in 2022 operated by the Rural Development Administration, and presented the results in scatter plot, correlation coefficient, Root Mean Square Error (RMSE), Normalized Root Mean Square Error (NRMSE), and Threat Score (TS). The LOG-applied model showed better results in wind speed, and the POW-applied model showed better results in gust.

A Study on the Assimilation of High-Resolution Microwave Humidity Sounder Data for Convective Scale Model at KMA (국지예보모델에서 고해상도 마이크로파 위성자료(MHS) 동화에 관한 연구)

  • Kim, Hyeyoung;Lee, Eunhee;Lee, Seung-Woo;Lee, Yong Hee
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.163-174
    • /
    • 2018
  • In order to assimilate MHS satellite data into the convective scale model at KMA, ATOVS data are reprocessed to utilize the original high-resolution data. And then to improve the preprocessing experiments for cloud detection were performed and optimized to convective-scale model. The experiment which is land scattering index technique added to Observational Processing System to remove contaminated data showed the best result. The analysis fields with assimilation of MHS are verified against with ECMWF analysis fields and fit to other observations including Sonde, which shows improved results on relative humidity fields at sensitive level (850-300 hPa). As the relative humidity of upper troposphere increases, the bias and RMSE of geopotential height are decreased. This improved initial field has a very positive effect on the forecast performance of the model. According to improvement of model field, the Equitable Threat Score (ETS) of precipitation prediction of $1{\sim}20mm\;hr^{-1}$ was increased and this impact was maintained for 27 hours during experiment periods.

Study on Improvement of Frost Occurrence Prediction Accuracy (서리발생 예측 정확도 향상을 위한 방법 연구)

  • Kim, Yongseok;Choi, Wonjun;Shim, Kyo-moon;Hur, Jina;Kang, Mingu;Jo, Sera
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.295-305
    • /
    • 2021
  • In this study, we constructed using Random Forest(RF) by selecting the meteorological factors related to the occurrence of frost. As a result, when constructing a classification model for frost occurrence, even if the amount of data set is large, the imbalance in the data set for development of model has been analyzed to have a bad effect on the predictive power of the model. It was found that building a single integrated model by grouping meteorological factors related to frost occurrence by region is more efficient than building each model reflecting high-importance meteorological factors. Based on our results, it is expected that a high-accuracy frost occurrence prediction model will be able to be constructed as further studies meteorological factors for frost prediction.

Study on the guidance of the gust factor (돌풍계수 가이던스에 관한 연구)

  • Park, Hyo-Soon
    • Atmosphere
    • /
    • v.14 no.3
    • /
    • pp.19-28
    • /
    • 2004
  • In this study, two years Automatic Weather Station (AWS) data observed near the coast and islands are used to evaluate gust factors only when time averaged wind speed is higher than 5 ms. The gust factors are quite different in spatial and temporal domain according to analysis method. As the averaged time is increased, the gust factors are also increased. But the gust factors are decreased when wind speed is increased. It is because each wind speed is averaged one and a maximum wind is the greatest one for each time interval. The result from t-test is shown that all data are included within the 99% significance level. A sample standard deviation of ten minutes and one minute are 0.137~0.197, 0.067~0.142, respectively. Recently, the gust factor provided at the Korea Meteorological Administration (KMA) Homepage is calculated with one-hour averaged method. All though this method is hard to use directly for forecasting the strong wind over sea and coast, the result will be a great help to express Ocean Storm Flash in the Regional Meteorological Offices and the Meteorological Stations.

A study on the Conceptual Design for the Real-time wind Power Prediction System in Jeju (제주 실시간 풍력발전 출력 예측시스템 개발을 위한 개념설계 연구)

  • Lee, Young-Mi;Yoo, Myoung-Suk;Choi, Hong-Seok;Kim, Yong-Jun;Seo, Young-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2202-2211
    • /
    • 2010
  • The wind power prediction system is composed of a meteorological forecasting module, calculation module of wind power output and HMI(Human Machine Interface) visualization system. The final information from this system is a short-term (6hr ahead) and mid-term (48hr ahead) wind power prediction value. The meteorological forecasting module for wind speed and direction forecasting is a combination of physical and statistical model. In this system, the WRF(Weather Research and Forecasting) model, which is a three-dimensional numerical weather model, is used as the physical model and the GFS(Global Forecasting System) models is used for initial condition forecasting. The 100m resolution terrain data is used to improve the accuracy of this system. In addition, optimization of the physical model carried out using historic weather data in Jeju. The mid-term prediction value from the physical model is used in the statistical method for a short-term prediction. The final power prediction is calculated using an optimal adjustment between the currently observed data and data predicted from the power curve model. The final wind power prediction value is provided to customs using a HMI visualization system. The aim of this study is to further improve the accuracy of this prediction system and develop a practical system for power system operation and the energy market in the Smart-Grid.