• Title/Summary/Keyword: Meteorological Modeling

Search Result 329, Processing Time 0.029 seconds

Lagrangian Particle Dispersion Modeling Intercomparison : Internal Versus Foreign Modeling Results on the Nuclear Spill Event (방사능 누출 사례일의 국내.외 라그랑지안 입자확산 모델링 결과 비교)

  • 김철희;송창근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.3
    • /
    • pp.249-261
    • /
    • 2003
  • A three-dimensional mesoscale atmospheric dispersion modeling system consisting of the Lagrangian particle dispersion model (LPDM) and the meteorological mesoscale model (MM5) was employed to simulate the transport and dispersion of non-reactive pollutant during the nuclear spill event occurred from Sep. 31 to Oct. 3, 1999 in Tokaimura city, Japan. For the comparative analysis of numerical experiment, two more sets of foreign mesoscale modeling system; NCEP (National Centers for Environmental Prediction) and DWD (Deutscher Wetter Dienst) were also applied to address the applicability of air pollution dispersion predictions. We noticed that the simulated results of horizontal wind direction and wind velocity from three meteorological modeling showed remarkably different spatial variations, mainly due to the different horizontal resolutions. How-ever, the dispersion process by LPDM was well characterized by meteorological wind fields, and the time-dependent dilution factors ($\chi$/Q) were found to be qualitatively simulated in accordance with each mesocale meteorogical wind field, suggesting that LPDM has the potential for the use of the real time control at optimization of the urban air pollution provided detailed meteorological wind fields. This paper mainly pertains to the mesoscale modeling approaches, but the results imply that the resolution of meteorological model and the implementation of the relevant scale of air quality model lead to better prediction capabilities in local or urban scale air pollution modeling.

Application of Weakly Coupled Data Assimilation in Global NWP System (전지구 예보모델의 대기-해양 약한 결합자료동화 활용성에 대한 연구)

  • Yoon, Hyeon-Jin;Park, Hyei-Sun;Kim, Beom-Soo;Park, Jeong-Hyun;Lim, Jeong-Ock;Boo, Kyung-On;Kang, Hyun-Suk
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.219-226
    • /
    • 2019
  • Generally, the weather forecast system has been run using prescribed ocean condition. As it is widely known that coupling between atmosphere and ocean process produces consistent initial condition at all-time scales to improve forecast skill, there are many trials on the application of data assimilation of coupled model. In this study, we implemented a weakly coupled data assimilation (short for WCDA) system in global NWP model with low horizontal resolution for coupled forecast with uncoupled initialization, following WCDA system at the Met Office. The experiment is carried out for a typhoon evolution forecast in 2017. Air-sea exchange process provides SST cooling and gives a substantial impact on tendency of central pressure changes in the decaying phase of the typhoon, except the underestimated central pressure. Coupled data assimilation is a challenging new area, requiring further work, but it would offer the potential for improving air-sea feedback process on NWP timescales and finally contributing forecast accuracy.

A Study on Improvement of the Observation Error for Optimal Utilization of COSMIC-2 GNSS RO Data (COSMIC-2 GNSS RO 자료 활용을 위한 관측오차 개선 연구)

  • Eun-Hee Kim;Youngsoon Jo;Hyoung-Wook Chun;Ji-Hyun Ha;Seungbum Kim
    • Atmosphere
    • /
    • v.33 no.1
    • /
    • pp.33-47
    • /
    • 2023
  • In this study, for the application of observation errors to the Korean Integrated Model (KIM) to utilize the Constellation Observing System for Meteorology, Ionosphere & Climate-2 (COSMIC-2) new satellites, the observation errors were diagnosed based on the Desroziers method using the cost function in the process of variational data assimilation. We calculated observation errors for all observational species being utilized for KIM and compared with their relative values. The observation error of the calculated the Global Navigation Satellite System Radio Occultation (GNSS RO) was about six times smaller than that of other satellites. In order to balance with other satellites, we conducted two experiments in which the GNSS RO data expanded by about twice the observation error. The performance of the analysis field was significantly improved in the tropics, where the COSMIC-2 data are more available, and in the Southern Hemisphere, where the influence of GNSS RO data is significantly greater. In particular, the prediction performance of the Southern Hemisphere was improved by doubling the observation error in global region, rather than doubling the COSMIC-2 data only in areas with high density, which seems to have been balanced with other observations.

Development of a Oak Pollen Emission and Transport Modeling Framework in South Korea (한반도 참나무 꽃가루 확산예측모델 개발)

  • Lim, Yun-Kyu;Kim, Kyu Rang;Cho, Changbum;Kim, Mijin;Choi, Ho-seong;Han, Mae Ja;Oh, Inbo;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.221-233
    • /
    • 2015
  • Pollen is closely related to health issues such as allergenic rhinitis and asthma as well as intensifying atopic syndrome. Information on current and future spatio-temporal distribution of allergenic pollen is needed to address such issues. In this study, the Community Multiscale Air Quality Modeling (CMAQ) was utilized as a base modeling system to forecast pollen dispersal from oak trees. Pollen emission is one of the most important parts in the dispersal modeling system. Areal emission factor was determined from gridded areal fraction of oak trees, which was produced by the analysis of the tree type maps (1:5000) obtained from the Korea Forest Service. Daily total pollen production was estimated by a robust multiple regression model of weather conditions and pollen concentration. Hourly emission factor was determined from wind speed and friction velocity. Hourly pollen emission was then calculated by multiplying areal emission factor, daily total pollen production, and hourly emission factor. Forecast data from the KMA UM LDAPS (Korea Meteorological Administration Unified Model Local Data Assimilation and Prediction System) was utilized as input. For the verification of the model, daily observed pollen concentration from 12 sites in Korea during the pollen season of 2014. Although the model showed a tendency of over-estimation in terms of the seasonal and daily mean concentrations, overall concentration was similar to the observation. Comparison at the hourly output showed distinctive delay of the peak hours by the model at the 'Pocheon' site. It was speculated that the constant release of hourly number of pollen in the modeling framework caused the delay.

Study on the micro-scale simulation of wind field over complex terrain by RAMS/FLUENT modeling system

  • Li, Lei;Zhang, Li-Jie;Zhang, Ning;Hu, Fei;Jiang, Yin;Xuan, Chun-Yi;Jiang, Wei-Mei
    • Wind and Structures
    • /
    • v.13 no.6
    • /
    • pp.519-528
    • /
    • 2010
  • A meteorological model, RAMS, and a commercial computational fluid dynamics (CFD) model, FLUENT are combined as a one-way off-line nested modeling system, namely, RAMS/FLUENT system. The system is experimentally applied in the wind simulation over a complex terrain, with which numerical simulations of wind field over Foyeding weather station located in the northwest mountainous area of Beijing metropolis are performed. The results show that the method of combining a meteorological model and a CFD model as a modeling system is reasonable. In RAMS/FLUENT system, more realistic boundary conditions are provided for FLUENT rather than idealized vertical wind profiles, and the finite volume method (FVM) of FLUENT ensures the capability of the modeling system on describing complex terrain in the simulation. Thus, RAMS/FLUENT can provide fine-scale realistic wind data over complex terrains.

A Study of Static Bias Correction for Temperature of Aircraft based Observations in the Korean Integrated Model (한국형모델의 항공기 관측 온도의 정적 편차 보정 연구)

  • Choi, Dayoung;Ha, Ji-Hyun;Hwang, Yoon-Jeong;Kang, Jeon-ho;Lee, Yong Hee
    • Atmosphere
    • /
    • v.30 no.4
    • /
    • pp.319-333
    • /
    • 2020
  • Aircraft observations constitute one of the major sources of temperature observations which provide three-dimensional information. But it is well known that the aircraft temperature data have warm bias against sonde observation data, and therefore, the correction of aircraft temperature bias is important to improve the model performance. In this study, the algorithm of the bias correction modified from operational KMA (Korea Meteorological Administration) global model is adopted in the preprocessing of aircraft observations, and the effect of the bias correction of aircraft temperature is investigated by conducting the two experiments. The assimilation with the bias correction showed better consistency in the analysis-forecast cycle in terms of the differences between observations (radiosonde and GPSRO (Global Positioning System Radio Occultation)) and 6h forecast. This resulted in an improved forecasting skill level of the mid-level temperature and geopotential height in terms of the root-mean-square error. It was noted that the benefits of the correction of aircraft temperature bias was the upper-level temperature in the midlatitudes, and this affected various parameters (winds, geopotential height) via the model dynamics.

Enhancing Medium-Range Forecast Accuracy of Temperature and Relative Humidity over South Korea using Minimum Continuous Ranked Probability Score (CRPS) Statistical Correction Technique (연속 순위 확률 점수를 활용한 통합 앙상블 모델에 대한 기온 및 습도 후처리 모델 개발)

  • Hyejeong Bok;Junsu Kim;Yeon-Hee Kim;Eunju Cho;Seungbum Kim
    • Atmosphere
    • /
    • v.34 no.1
    • /
    • pp.23-34
    • /
    • 2024
  • The Korea Meteorological Administration has improved medium-range weather forecasts by implementing post-processing methods to minimize numerical model errors. In this study, we employ a statistical correction technique known as the minimum continuous ranked probability score (CRPS) to refine medium-range forecast guidance. This technique quantifies the similarity between the predicted values and the observed cumulative distribution function of the Unified Model Ensemble Prediction System for Global (UM EPSG). We evaluated the performance of the medium-range forecast guidance for surface air temperature and relative humidity, noting significant enhancements in seasonal bias and root mean squared error compared to observations. Notably, compared to the existing the medium-range forecast guidance, temperature forecasts exhibit 17.5% improvement in summer and 21.5% improvement in winter. Humidity forecasts also show 12% improvement in summer and 23% improvement in winter. The results indicate that utilizing the minimum CRPS for medium-range forecast guidance provide more reliable and improved performance than UM EPSG.

A Study on the Assimilation of High-Resolution Microwave Humidity Sounder Data for Convective Scale Model at KMA (국지예보모델에서 고해상도 마이크로파 위성자료(MHS) 동화에 관한 연구)

  • Kim, Hyeyoung;Lee, Eunhee;Lee, Seung-Woo;Lee, Yong Hee
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.163-174
    • /
    • 2018
  • In order to assimilate MHS satellite data into the convective scale model at KMA, ATOVS data are reprocessed to utilize the original high-resolution data. And then to improve the preprocessing experiments for cloud detection were performed and optimized to convective-scale model. The experiment which is land scattering index technique added to Observational Processing System to remove contaminated data showed the best result. The analysis fields with assimilation of MHS are verified against with ECMWF analysis fields and fit to other observations including Sonde, which shows improved results on relative humidity fields at sensitive level (850-300 hPa). As the relative humidity of upper troposphere increases, the bias and RMSE of geopotential height are decreased. This improved initial field has a very positive effect on the forecast performance of the model. According to improvement of model field, the Equitable Threat Score (ETS) of precipitation prediction of $1{\sim}20mm\;hr^{-1}$ was increased and this impact was maintained for 27 hours during experiment periods.

Numerical Study on the Impact of Meteorological Input Data on Air Quality Modeling on High Ozone Episode at Coastal Region (기상 입력 자료가 연안지역 고농도 오존 수치 모의에 미치는 영향)

  • Jeon, Won-Bae;Lee, Hwa-Woon;Lee, Soon-Hwan;Choi, Hyun-Jung;Kim, Dong-Hyuk;Park, Soon-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.30-40
    • /
    • 2011
  • Numerical simulations were carried out to investigate the impact of SST spatial distribution on the result of air quality modeling. Eulerian photochemical dispersion model CAMx (Comprehensive Air quality Model with eXtensions, version 4.50) was applied in this study and meteorological fields were prepared by RAMS (Regional Atmospheric Modeling System). Three different meteorological fields, due to different SST spatial distributions were used for air quality modeling to assess the sensitivity of CAMx modeling to the different meteorological input data. The horizontal distributions of surface ozone concentrations were analyzed and compared. In each case, the simulated ozone concentrations were different due to the discrepancies of horizontal SST distributions. The discrepancies of land-sea breeze velocity caused the difference of daytime and nighttime ozone concentrations. The result of statistic analysis also showed differences for each case. Case NG, which used meteorological fields with high resolution SST data was most successfully estimated correlation coefficient, root mean squared error and index of agreement value for ground level ozone concentration. The prediction accuracy was also improved clearly for case NG. In conclusion, the results suggest that SST spatial distribution plays an important role in the results of air quality modeling on high ozone episode at coastal region.

A Study on Improvement of the Use and Quality Control for New GNSS RO Satellite Data in Korean Integrated Model (한국형모델의 신규 GNSS RO 자료 활용과 품질검사 개선에 관한 연구)

  • Kim, Eun-Hee;Jo, Youngsoon;Lee, Eunhee;Lee, Yong Hee
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.251-265
    • /
    • 2021
  • This study examined the impact of assimilating the bending angle (BA) obtained via the global navigation satellite system radio occultation (GNSS RO) of the three new satellites (KOMPSAT-5, FY-3C, and FY-3D) on analyses and forecasts of a numerical weather prediction model. Numerical data assimilation experiments were performed using a three-dimensional variational data assimilation system in the Korean Integrated Model (KIM) at a 25-km horizontal resolution for August 2019. Three experiments were designed to select the height and quality control thresholds using the data. A comparison of the data with an analysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) integrated forecast system showed a clear positive impact of BA assimilation in the Southern Hemisphere tropospheric temperature and stratospheric wind compared with that without the assimilation of the three new satellites. The impact of new data in the upper atmosphere was compared with observations using the infrared atmospheric sounding interferometer (IASI). Overall, high volume GNSS RO data helps reduce the RMSE quantitatively in analytical and predictive fields. The analysis and forecasting performance of the upper temperature and wind were improved in the Southern and Northern Hemispheres.