• Title/Summary/Keyword: Meteorological Map Service

Search Result 27, Processing Time 0.028 seconds

Web-based Geovisualization System of Oceanographic Information using Dynamic Particles and HTML5 (동적 파티클과 HTML5를 이용한 웹기반 해양정보 가시화시스템)

  • Kim, Jinah;Kim, Sukjin
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.12
    • /
    • pp.660-669
    • /
    • 2017
  • In order to improve user accessibility and interactivity, system scalability, service speed, and a non-standard internet web environment, we developed a Web-based geovisualization system of oceanographic information using HTML5 and dynamic particles. In particular, oceanographic and meteorological data generated from a satellite remote sensing and radar measurement and a 3-dimensioanl numerical model, has the characteristics of a heterogeneous large-capacity multi-dimensional continuous spatial and temporal variability, based on geographic information. Considering those attributes, we applied dynamic particles represent the spatial and temporal variations of vector type oceanographic data. HTML5, WebGL, Canvas, D3, and Leaflet map libraries were also applied to handle various multimedia data, graphics, map services, and location-based service as well as to implement multidimensional spatial and statistical analyses such as a UV chart.

Status of Agrometeorology Monitoring Network for Weather Risk Management: Focused on RDA of Korea (위험기상 대응 농업기상관측 네트워크의 현황: 농촌진흥청을 중심으로)

  • Shim, Kyo Moon;Kim, Yong Seok;Jeong, Myung Pyo;Choi, In Tae;So, Kyu Ho
    • Journal of Climate Change Research
    • /
    • v.6 no.1
    • /
    • pp.55-60
    • /
    • 2015
  • Agro-Meteorological Information Service (AMIS) network has been established since 2001 by Rural Development Administration (RDA) in Korea, and has provided access to current and historical weather data with useful information for agricultural activities. AMIS network includes 158 automated weather stations located mostly in farm region, with planning to increase by 200 stations until 2017. Agrometeorological information is disseminated via the web site (http://weather.rda.go.kr) to growers, researchers, and extension service officials. Our services will give enhanced information from observation data (temperature, precipitation, etc.) to application information, such as drought index, agro-climatic map, and early warning service. AMIS network of RDA will help the implementation of an early warning service for weather risk management.

Estimation of Road Sections Vulnerable to Black Ice Using Road Surface Temperatures Obtained by a Mobile Road Weather Observation Vehicle (도로기상차량으로 관측한 노면온도자료를 이용한 도로살얼음 취약 구간 산정)

  • Park, Moon-Soo;Kang, Minsoo;Kim, Sang-Heon;Jung, Hyun-Chae;Jang, Seong-Been;You, Dong-Gill;Ryu, Seong-Hyen
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.525-537
    • /
    • 2021
  • Black ices on road surfaces in winter tend to cause severe and terrible accidents. It is very difficult to detect black ice events in advance due to their localities as well as sensitivities to surface and upper meteorological variables. This study develops a methodology to detect the road sections vulnerable to black ice with the use of road surface temperature data obtained from a mobile road weather observation vehicle. The 7 experiments were conducted on the route from Nam-Wonju IC to Nam-Andong IC (132.5 km) on the Jungang Expressway during the period from December 2020 to February 2021. Firstly, temporal road surface temperature data were converted to the spatial data with a 50 m resolution. Then, the spatial road surface temperature was normalized with zero mean and one standard deviation using a simple normalization, a linear de-trend and normalization, and a low-pass filter and normalization. The resulting road thermal map was calculated in terms of road surface temperature differences. A road ice index was suggested using the normalized road temperatures and their horizontal differences. Road sections vulnerable to black ice were derived from road ice indices and verified with respect to road geometry and sky view, etc. It was found that black ice could occur not only over bridges, but also roads with a low sky view factor. These results are expected to be applicable to the alarm service for black ice to drivers.

The Analysis of Wind Data at the Cities in Korea with Meteorological Administration Data -Wind Data Analysis in 32 Cities During 30 Years- (기상청 자료를 이용한 도시의 바람자료 분석 연구 - 32개 도시의 30년간 바람자료 분석 -)

  • Yoon, Jae-ock
    • KIEAE Journal
    • /
    • v.3 no.1
    • /
    • pp.5-12
    • /
    • 2003
  • Using the wind, we can get a thermal comfort in summer. In winter we must shut out the wind. To achieve sustainable environmental building design, especially wind data is very important. The wind direction and wind velocity of 32 cities were analyzed to suggest the wind map of Korea. The weather data which was used in this paper was from National Weather Service(19711.1~2000.12.31). The results of this study are 1) The monthly wind velocity of Seoul is 1.1m/s-3.8m/s. 2) The maximum wind velocity could be estimated from the annual average wind velocity. The regression curve is Y(The maximum wind velocity)=6.369732 X(annual average wind velocity) + 6.391668 (P< 9.66E-12). 3) The wind velocity at the inland area which is far from 25km sea side is smaller than coastal area. The distance from the sea is major index of wind velocity. 4) The monthly wind direction was compared inland area with coastal area. 5) The uniform-velocity line on the Korean map was obtained.

Study On Receiving and Processing Method about Utilization of Near Real-time Satellite Data (준실시간 활용을 위한 위성자료 수신, 가공 방안 연구)

  • Kim, Soon Yeon;Jung, Young Sim;An, Joo Young;Park, Sang Hoon;Won, Young Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.467-467
    • /
    • 2017
  • 토양수분 및 황사발생 연구에 있어 효율적인 광역 분석을 위하여 위성자료가 활용되고 있다. 활용 시나리오에 따라서는 준실시간 자료 수신, 처리가 필요하며 본 연구에서는 이에 대한 방안을 연구하기 위하여 유럽 EUMETSAT(European Organisation for the Exploitation of Meteorological Satellites)의 ASCAT(Advanced Scatterometer) Metop-A 자료에 대하여 파악하였다. 자료 수신 프로토콜에 있어서 FTP, HTTP 등 전통적 방법에 대한 현황과 함께 비교적 최근 기법인 OGC(Open Geospatial Consortium)  WMS(Web Map Service), WCS(Web Coverage Service) 방식의 지원 현황에 대하여 확인하였다. 제공되는 자료 Format부분은 EPS Native와 BUFR(Binary Universal Form for the Representation of meteorological data)을 살펴보되 데이터 프로바이더 측에서 대부분 채택되고 있는 NetCDF(network Common Data Form)를 중심으로 파악하였다. 수신된 자료의 처리 자동화를 위한 소프트웨어는 OSGeo(The Open Source Geospatial Foundation)의 GDAL(Geospatial Data Abstraction Library), 미국 NCAR(National Center for Atmospheric Research)의 NCL(NCAR Command Language)을 중심으로 확인하였다. 자료 가공기법은 격자(Raster) 자료에 대한 기본 메타정보 확인, 좌표참조체계 변환, 해상도 및 Format 변환을 중심으로 확인하였다. 한편 OGC WMS, WCS는 자료의 전송 프로토콜 기법이면서 동시에 서버 사이드에서의 자료 변환 기능을 구비하고 있다. 예를 들어 Http Request에서 영역(Extent), Format 형식, 좌표참조체계를 지정할 수 있다. OGC WMS에 대한 EUMETSAT 파일럿 서비스에서 반환 자료의 공간적 영역, 복수 시점 제공 현황, 반환 포맷 지원 상황은 실제 메서드를 사용하여 파악하였고, 향후 발전 방향을 전망하였다.

  • PDF

Sensitivity Analysis of the High-Resolution WISE-WRF Model with the Use of Surface Roughness Length in Seoul Metropolitan Areas (서울지역의 고해상도 WISE-WRF 모델의 지표면 거칠기 길이 개선에 따른 민감도 분석)

  • Jee, Joon-Bum;Jang, Min;Yi, Chaeyeon;Zo, Il-Sung;Kim, Bu-Yo;Park, Moon-Soo;Choi, Young-Jean
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.111-126
    • /
    • 2016
  • In the numerical weather model, surface properties can be defined by various parameters such as terrain height, landuse, surface albedo, soil moisture, surface emissivity, roughness length and so on. And these parameters need to be improved in the Seoul metropolitan area that established high-rise and complex buildings by urbanization at a recent time. The surface roughness length map is developed from digital elevation model (DEM) and it is implemented to the high-resolution numerical weather (WISE-WRF) model. Simulated results from WISE-WRF model are analyzed the relationship between meteorological variables to changes in the surface roughness length. Friction speed and wind speed are improved with various surface roughness in urban, these variables affected to temperature and relative humidity and hence the surface roughness length will affect to the precipitation and Planetary Boundary Layer (PBL) height. When surface variables by the WISE-WRF model are validated with Automatic Weather System (AWS) observations, NEW experiment is able to simulate more accurate than ORG experiment in temperature and wind speed. Especially, wind speed is overestimated over $2.5m\;s^{-1}$ on some AWS stations in Seoul and surrounding area but it improved with positive correlation and Root Mean Square Error (RMSE) below $2.5m\;s^{-1}$ in whole area. There are close relationship between surface roughness length and wind speed, and the change of surface variables lead to the change of location and duration of precipitation. As a result, the accuracy of WISE-WRF model is improved with the new surface roughness length retrieved from DEM, and its surface roughness length is important role in the high-resolution WISE-WRF model. By the way, the result in this study need various validation from retrieved the surface roughness length to numerical weather model simulations with observation data.

Analysis of Agricultural Climatology in Cheju Island I. Distribution of Daily Minimum Temperature in Winter Season Estimated from a Topoclimatological Method (제주도의 농업기후 분석 I. 지형기후 추정법과 동계 일최저기온 분포)

  • 윤진일;유근배;이민영;정귀원
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.3
    • /
    • pp.261-269
    • /
    • 1989
  • Agricultural activities in Chejudo require more specialized weather services in this region. The meteorological information available from the Korea Meteorological Service (KMS) is limited in its areal coverage because the KMS stations are located along the narrow band of coastal area. topoclimatological technique which makes use of empirical relationships between the topography and the weather can be applied to produce reasonable estimates of the climatic variables such as air temperature and precipitation over remote land area where routine observations are rare. Presentation of these estimates in a from of fine-mesh grid map can also be helpful to upgrade the quality of weather services in this region. Altitude values of the 250 m grid points were read from a 1: 25000 topographic map and the mean altitude, the mean slope, and the aspect of the slope were determined for each 1 km$^2$ land area from these altitude data. Daily minimum air temperature data were collected from 18 points in Chejudo during the winter period from November 1987 to February 1988. The data were grouped into 3 sets based on synoptic pressure pattern. Departures from the KMS observations were regressed to the topographical variables to delineate empirical relationships between the local minimum temperature under specific pressure patterns and the site topography. The selected regression equations were used to calculate the daily minimum temperature for each 1 km$^2$ land area under the specific pressure patterns. The outputs were presented in a fine-mesh grid map with a 6-level contour capability.

  • PDF

A Web-based Information System for Plant Disease Forecast Based on Weather Data at High Spatial Resolution

  • Kang, Wee-Soo;Hong, Soon-Sung;Han, Yong-Kyu;Kim, Kyu-Rang;Kim, Sung-Gi;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.37-48
    • /
    • 2010
  • This paper describes a web-based information system for plant disease forecast that was developed for crop growers in Gyeonggi-do, Korea. The system generates hourly or daily warnings at the spatial resolution of $240\;m{\times}240\;m$ based on weather data. The system consists of four components including weather data acquisition system, job process system, data storage system, and web service system. The spatial resolution of disease forecast is high enough to estimate daily or hourly infection risks of individual farms, so that farmers can use the forecast information practically in determining if and when fungicides are to be sprayed to control diseases. Currently, forecasting models for blast, sheath blight, and grain rot of rice, and scab and rust of pear are available for the system. As for the spatial interpolation of weather data, the interpolated temperature and relative humidity showed high accuracy as compared with the observed data at the same locations. However, the spatial interpolation of rainfall and leaf wetness events needs to be improved. For rice blast forecasting, 44.5% of infection warnings based on the observed weather data were correctly estimated when the disease forecast was made based on the interpolated weather data. The low accuracy in disease forecast based on the interpolated weather data was mainly due to the failure in estimating leaf wetness events.

Rainfall-Runoff Analysis with Soil Moisture Accounting Model (토양습윤모형을 이용한 강우-유출분석)

  • Hwang Ma ha;Ko Ick Hwan;Jeong Woo Chang;Maeng Seung Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.605-609
    • /
    • 2005
  • This study is to perform the rainfall-runoff analysis of the basin of Yongdam dam where is loacted in the Geumriver basin. The model used is the SAC-SMA model which was developed by U.S. National Weather Service. The Precipitation data used as the input data of the model are daily ones observed in 2002 and the mean of values recorded in 5 rainfall stations. The evaporation data are used observed in Daejeon meteorological station. The geographical data such as basin slope and stream gradient are elicited from the numerical map analysis. In the verification through the comparison of calculated daily inflow with observed one, parameters used in the model are estimated manually. As the result of verification, total annual calculated inflow is 13,547CMS and agree accurately with the observed one. During the period of one year of 2002, before 100 days and after 250 days, the soil moisture condition in the upper zone was significantly dry and in spite of the rainfall in this period, the runoff was not generated. Through this result, we can observe that the moisture condition in the soil affects strongly the runoff in a basin.

  • PDF

Using SWAT Model for streamflow simulation in Burundi

  • Habimana, Jean de Dieu;Ha, Doan Thi Thu;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.117-117
    • /
    • 2020
  • The main objective of this study was to setup model and evaluate the model performance for streamflow simulation in Burundi using Soil and Water Assessment Tool (SWAT) model. The total area of Burundi is 27,834 ㎢. The elevation of Burundi ranges from 780 m to 2,700m. The West and East are low lands, while the Central part is high land. The topographic data (30 meters Digital Elevation Model) and land use and land cover data of Burundi were obtained respectively from Shuttle Radar Topography Mission (SRTM) and the Regional Centre for Mapping of Resources for Development (RCMRD). The soil data used was obtained from Food and Agriculture Organization (FAO). The local weather data and discharge data were provided by Burundi Hydro meteorological Service (IGEBU). Mean Areal Precipitation (MAP) and Mean Areal Temperature (MAT) were estimated. The streamflow simulation was done for the period 1980-2017. The calibration and validation of river discharge was performed at a daily time step from 2005 through 2011 as the calibration period and 2012 up to 2017 as the validation period. The findings show that streamflow decreases during Jun to September and increases during March to May and October to December.

  • PDF