• Title/Summary/Keyword: Metamaterial

Search Result 228, Processing Time 0.027 seconds

Extraction of Effective Permittivity and Permeability of Periodic Metamaterial Cells (주기 구조 Metamaterial의 유효 유전율과 투자율 추출)

  • Lee, Dong-Hyun;Park, Wee-Sang
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.60-68
    • /
    • 2008
  • The complex permittivity and permeability of various periodic metamaterial (MTM) cells are extracted by simulating a fictitious rectangular waveguide consisting of PEC and PMC walls. The shapes of the MTM cells include a thin wire (TW), a single split-ring resonator (SSRR), a double SRR (DSRR), a modified SRR, and a combined structure of the TW and the DSRR. The TW falls on a negative-$\varepsilon$/positive-$\mu$ region, the SRRs on a positive-$\varepsilon$/negative-$\mu$ region, and the combined structure on a negative-$\varepsilon$/negative-$\mu$ region. We also investigate how the permeability and permeability are affected by the dimension parameters of the MTM cells. Another extraction technique utilizing time domain signals is developed overcoming some limitations that the waveguide technique can not handle.

Frequency Domain Characteristics of the Metamaterial Slab Using 2D-FDTD (2D-FDTD 방법을 이용한 메타물질 Slab의 주파수 영역 특성)

  • Hong, Ic-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1165-1172
    • /
    • 2008
  • In this paper, the scattering parameters of the metamaterial slab are obtained using the 2D FDTD(Finite-Difference Time-Domain) method. FDTD method is one of strongest electromagnetic numerical method which is widely used to analyze the metamaterial structure because of its simplicity. But it is very difficult to obtain frequency response of metamaterial itself because frequency dispersive model such as Lorentz, Drude model are used in FDTD. We used the well-known m-n-m cycle sine pulse to obtain the frequency response of the metamaterials. Comparisons between the wideband Gaussian input pulse and band-limited m-n-m cycle sine pulse are performed in this paper also. From the results, we concluded that the scattering parameters in frequency domain can be obtained using specific input pulse in FDTD even if the response has valid only for limited bandwidth.

A Method to Suppress the Spurious Radiation due to the Current Pulse on the Cable using the Frequency Selective Metamaterial Structure (주파수 선택도를 가지는 메타재질구조를 이용한, 선로상의 전류펄스에 의한 불요방사 억제기법)

  • Kahng, Sungtek;Yang, Inkyu;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.517-522
    • /
    • 2013
  • The spurious electromagnetic radiation is generated due to the RF unbalanced current on a conductive cable connecting an electronic device to another. A metamaterial-based filtering geometry with frequency selectivity is suggested to reduce the radiation with a bandgap structure, where the right-handed inductance and capacitance stem from the transmission-like configuration between the cable and the metal protrusion, and the left-handed components come from the narrow cavities. The effect of the structure on the unbalanced current pulse and its spurious radiation is presented in the FDTD-method frame work.

Design of a Metamaterial Absorber for ISM Applications

  • Tak, Jinpil;Lee, Youngki;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • This paper proposes a metamaterial (MTM) absorber for 2.45 GHz band applications. The unit cell of the proposed absorber consists of an electric LC (ELC) resonator and a strip line, which are printed on opposite sides of the substrate. The ELC resonator comprises two split ring resonators (SRRs) and a connecting line with a resistor. The designed absorber exhibits an absorption of 94 % and a half-max bandwidth of 0.16 GHz at 2.45 GHz.

Investigating Electromagnetic Power Transfer Ratio of Circular Polarizing Planar Metasurface Lens

  • Lee, ChangHyeong;Han, DaJung;Khattak, Muhamad Kamran;Kahng, Sungtek
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.1
    • /
    • pp.37-40
    • /
    • 2016
  • We designed an antenna structure with the circular polarization metamaterial superstrate which increases the directivity of the primary antenna as a lens. The metamaterial superstrate removes the necessity of the array antenna and complicated feed. Plus, it provides the Fabry-perot cavity with the circular polarization. With regard to the primary antenna, a CRLH antenna is adopted to have the size-reduction from the conventional half-wavelength patch antenna.

Metamaterial-Based Zeroth-Order Resonant Antennas for MIMO Applications

  • Kim, Gunyoung;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.3
    • /
    • pp.195-197
    • /
    • 2013
  • A compact ($0.26{\times}0.05$ ${\lambda}_0$ at 2.27 GHz) metamaterial-based zeroth-order resonant antenna system consisting of epsilon-negative (ENG) and mu-negative (MNG) structures is proposed. Although the spacing between the ENG and MNG antennas is only 0.09 ${\lambda}_0$, the isolation is relatively high (27.6 dB at 2.27 GHz). Furthermore, the envelope correlation is only 0.015. The radiation efficiencies of the proposed two radiators are also very high (90% on average).

Isolation Circuits Based on Metamaterial Transmission Lines for Multiplexers(Invited Paper)

  • Lee, Hanseung;Itoh, Tatsuo
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.3
    • /
    • pp.141-150
    • /
    • 2013
  • Multiplexers based on isolation circuits made of metamaterial lines are proposed and studied. The new approach provides unique advantageous features beneficial to system designer. For instance, there is no need to modify the filters used in multiplexers. Also, the design process is straightforward. In this paper, two types of multiplexers based on metamaterial isolation circuits are presented, and their operation concepts are explained. Also, theories and design process of isolation circuits are presented to help readers design and fabricate proposed multiplexers. For verifying the concepts, two types of triplexers and two types of quadruplexers are designed and fabricated. All filters used in the multiplexers are commercial surface acoustic wave filters. The measured results are well matched with the simulation results.

Guided Modes along Dispersive Double Negative (DNG) Metamaterial Columns

  • Kim, Ki-Young;Tae, Heung-Sik;Lee, Jeong-Hae
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.59-63
    • /
    • 2003
  • Modal properties of guided waves along circular dispersive double negative (DNG) index metamaterial rod waveguides are numerically investigated. Identical forms of dispersive dielectric and magnetic material constants are used for simplicity. For degenerated azimuthally symmetric mode, a multimode region, a single mode region, a band gap region and a forbidden region are found which cannot be observed in the case of the conventional dielectric rod waveguide. As the normalized frequency goes down, discrete guided modes are continuously generated, which is a reverse property of conventional dielectric rod waveguide. Also, there are high-frequency cutoffs, which have been generally examined in dispersive circular geometries such as a plasma column or a plasma Goubau line. In the single mode region, both the low- and high-frequency cutoffs are existed where the propagation constants are continued between the guided oscillating and surface modes.

  • PDF

Wireless Power Transmission between Two Metamaterial-Inspired Loops at 300 MHz

  • Kim, Gun-Young;Jung, Youn-Kwon;Lee, Bom-Son
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.219-223
    • /
    • 2010
  • Based on a provided closed-form wireless power transmission (WPT) efficiency formula, which may be used for any value of load, we have analyzed the WPT efficiencies between two metamaterial-inspired loop antennas in various aspects. Due to the modeling based on low frequency circuit theory, the provided formula at the center resonant frequency has been found to be accurate until when the distance between the two loop antennas increases to 15 cm (about $\lambda_0/6$ at 300 MHz). When the two loops get closer, the resonant frequency has been found to split into two in theory, simulations, and measurements. The EM-simulated and measured efficiencies at new resonant frequencies are 60.9 % and 46.3 %, respectively, at d=15 cm. With two extra rings around the loops, the maximum efficiency is enhanced to 93.7 % at d=15 cm. The effect of the additional two rings is about 30 %.

A Novel Compact Metamaterial Zeroth Order Resonant Bandpass Filter for a VHF Band and Its Stopband Improvement by Transmission Zeros

  • Kahng, Sungtek;Jang, Geonho
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.263-266
    • /
    • 2013
  • A novel compact and low-loss VHF bandpass filter is presented with enhanced stopband performance using metamaterial zeroth order resonator (ZOR) characteristics. An in-line ZOR filter is initially suggested and changed to have transmission zeros (TZs) due to source-load coupling for effective improvement of the isolation from UHF wireless channels. The proposed filter is smaller than 1/10 of the conventional filters in terms of size and has relatively very low insertion loss (< 1 dB for the electromagnetic (EM) simulation and < 3 dB for the measurement) and return loss (<-20 dB) in the passband due to the approximately 80% size reduction and the higher isolation in the stopband due to the TZs. The circuit and EM simulation are in good agreement with the measurements.