• Title/Summary/Keyword: Metallic powders

Search Result 151, Processing Time 0.03 seconds

Discrete Element Simulation of the Sintering of Composite Powders

  • Martina, C. L.;Olmos, L.;Schneiderb, L. C. R.;Bouvardc, D.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.262-263
    • /
    • 2006
  • The free sintering of metallic powders blended with non sintering inclusions is investigated by the Discrete Element Method (DEM). Each particle, whatever its nature (metallic or inclusion) is modeled as a sphere that interacts with its neighbors. We investigate the retarding effect of the inclusions on the sintering kinetics. Also, we present a simple coarsening model for the metallic particles, which allows large particles to grow at the expense of the smallest.

  • PDF

Consolidation and Characterization of Cu-based Bulk Metallic Glass Composites (Cu기 벌크 비정질 복합체의 성형 및 특성)

  • Lee, Jin-Kyu;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.399-404
    • /
    • 2007
  • The Cu-based bulk metallic glass (BMG) composite was fabricated by spark plasma sintering (SPS) using of gas-atomized metallic glass powders and ductile brass powders. No defect such as pores and cavities was observed at the interface between the brass powder and the metallic glass matrix, suggesting that the SPS process caused a severe viscous flow of the metallic glass and brass phases in the supercooled liquid region, resulting in a full densification. The BMG composites shows some macroscopic plasticity after yielding, although the levels of strength decreased.

Fe-Based Nano-Structured Powder Reinforced Zr-Based Bulk Metallic Glass Composites by Powder Consolidation

  • Cho, Seung-Mok;Han, Jun-Hyun;Lee, Jin-Kyu;Kim, Yu-Chan
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.504-509
    • /
    • 2009
  • The Zr-based bulk metallic glass matrix composites of a mixture of gas-atomized metallic glass powders and Fe-based nanostructured powders were fabricated by spark plasma sintering. The Fe-based nanostructured powders adopted for the enhancement of plasticity were well distributed in the matrix after consolidation, and the matrix remains as a fully amorphous phase. The successful consolidation of metallic glass matrix composite with high density was attributed to viscous flow in the supercooled liquid state during spark plasma sintering. Unlike other amorphous matrix composites, in which improved ductility could be obtained at the expense of their strength, the developed composite exhibited improvement both in strength and ductility. The ductility improvement in the composite was considered to be due to the formation of multiple shear bands under the presence of the Fe-based nanostructured particles.

Effect of Carbon-Nanotube Addition on Thermal Stability of Ti-based Metallic Glass Composites

  • Hsu, Chih-Feng;Lee, Pee-Yew
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1057-1058
    • /
    • 2006
  • The preparation of $Ti_{50}Cu_{28}Ni_{15}Sn_7$ metallic glass composite powders was accomplished by the mechanical alloying of a pure Ti, Cu, Ni, Sn and carbon nanotube (CNT) powder mixture after 8 h milling. In the ball-milled composites, the initial CNT particles were dissolved in the Ti-based alloy glassy matrix. The bulk metallic glass composite was successfully prepared by vacuum hot pressing the as-milled CNT/$Ti_{50}Cu_{28}Ni_{15}Sn_7$ metallic glass composite powders. A significant hardness increase with the CNT additions was observed for the consolidated composite compacts.

  • PDF

Nanocrystallization of Metallic Powders during High Pressure Torsion Processing (금속분말의 고압비틀림 성형시 나노결정화)

  • Yoon, Seung-Chae;Kim, Hyoung-Seop
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.105-106
    • /
    • 2007
  • Microstructure and hardness of metallic powder of Cu was studied after high pressure torsion (HPT) with 10 torsions and high pressure of 6 GPa. The size Cu grain decreases drastically after HPT and reaches the nano size range. During HPT, Cu powder increases hardness and Hall-Petch hardening, due to the decreasing grain size. In this study, effect of HPT on the hardness of Cu powders and consolidation with Nanocrystalline of the work reported here. The results indicated that Cu powder has a beneficial effect on homogeneous deformation, reducing grain size.

  • PDF

Spark Plasma Sintering of the Ductile Cu-Gas-atomized Ni Bulk Metallic Glass Composite Powders (연질 Cu 분말-가스분무 Ni계 벌크 비정질 복합분말의 방전플라즈마 소결에 관한 연구)

  • Kim, Jin-Chun;Kim, Yong-Jin;Kim, Byoung-Kee;Kim, Ji-Soon
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.351-359
    • /
    • 2006
  • Ni based($Ni_{57}Zr_{20}Ti_{18}Si_2Sn_3$) bulk metallic glass(BMG) powders were produced by a gas atomization process, and ductile Cu powders were mixed using a spray drying process. The Ni-based amorphous powder and Cu mixed Ni composite powders were compacted by a spark plasma sintering (SPS) processes into cylindrical shape. The relative density varied with the used SPS mold materials such as graphite, hardened steel and WC-Co hard metal. The relative density increased from 87% to 98% when the sintering temperature increased up to $460^{\circ}C$ in the WC-Co hard metal mold.

Improvement of the mechanical properties of titanium carbonitride-metal composites by modification of interfaces (계면 개선을 통한 타이타늄 탄/질화물 금속 복합재료의 기계적 물성 향상)

  • Kwon, Hanjung
    • Ceramist
    • /
    • v.23 no.2
    • /
    • pp.114-131
    • /
    • 2020
  • Fracture in the titanium carbonitride-metal composites occurs by crack propagation through the carbonitride grains or in the interfaces. Thus, intrinsic properties of the carbonitride need to be enhanced and the interfaces should be also modified to coherent structure to strengthen the composites. Especially, interfacial structure can be the main factor to determine the mechanical properties of titanium carbonitride-metal composites because the interfaces between carbonitride grains and metallic phase are weak parts due to heterogeneous nature of carbonitride and metallic phase. In this paper, methodologies for improving the interfacial structure of titanium carbonitride-metal composites are suggested. Total area of the interfaces can be reduced using solid solution type carbonitrides as raw materials instead of a mixture of various carbonitrides in the composites. Also, synthesis of titanium carbonitride-metal composite powders and the low-temperature sintering of the composite powders for short time can be the way for formation of coherent interfaces. The sintering of the composite powders for short time at low temperature can reduce the potential of formation of interfaces by dissolution and precipitation of carbonitride in the liquid metal. As a result of formation of coherent boundaries due to low-temperature and short-time sintering, interfaces between titanium carbonitride grains and metallic phase have the favorable structure for the enhanced fracture toughness. It is believed that the low-temperature sintering of solid solution type composite powders for short time can be the way to improve the low toughness of the titanium carbonitride-metal composites.

Functionally Graded Properties Induced by Direct Laser Melting of Compositionally Selected Metallic Powders (레이저 직접 용융 시 금속분말의 함량조정을 통한 경사물성 부여)

  • Han, S.W.;Ji, W.J.;Lee, C.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.5
    • /
    • pp.303-310
    • /
    • 2014
  • Functionally graded properties are characterized by the gradual variation in composition and structure through the volume of the material, resulting in corresponding gradation in properties of the material. Direct laser melting (DLM) is a prototyping process whereby a 3-D part is built layer-wise by melting metal powder with laser scanning. Studies have been performed on the functionally graded properties induced by direct laser melting of compositionally selected metallic powders. For the current study, quadrangle structures were fabricated by DLM using Fe-Ni-Cr powders having variable compositions. Hardness and EDX analysis were conducted on cross-sections of the fabricated structure to characterize the properties. From the analysis, it is shown that functionally graded properties can be successfully obtained by DLM of selected metallic powders with varying compositions.

Densification and Conolidation of Powders by Equal Channel Angular Pressing

  • Yoon, Seung-Chae;Hong, Sun-Ig;Hong, Sun-Hyung;Kim, Hyoung-Seop
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.978-979
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve both full density and grain refinement of metallic powders with least grain growth. ECAP (Equal channel angular pressing) was used for the powder consolidation. We investigated the consolidation, plastic deformation and microstructure evolution behavior of the metallic powders during ECAP using an experimental method. It was found that high mechanical strength could be achieved effectively as a result of the well bonded powder contact surface during ECAP process of gas atomized Al-Si powders.

  • PDF

Centrifugal Induction Coating of Metallic Powders

  • Natanovich, Gafo Yuri;Pavlovich, Kashitsyn Leonid;Aleksandrovich, Sosnovsky Igor
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.985-986
    • /
    • 2006
  • Principal peculiarities of technology for applying coatings of metallic powders on internal surfaces of hollow cylindrical parts by centrifugal method with induction heating from internal surface of part are examined. It is shown that most effective checking and regulating method of sintered powder layer is monitoring the high-frequency current generator power upon contactless pickup indications of external surface temperature of rotating part.

  • PDF