• 제목/요약/키워드: Metallic plate

검색결과 211건 처리시간 0.029초

금속 샌드위치 판재 대면적 롤 프로젝션 용접에 관한 연구 : Part 2 - 수치 해석 (A Study on Large Area Roll Projection Welding for Metallic Sandwich Plate : Part 2 - Numerical Analysis)

  • 김종화;안준수;나석주
    • Journal of Welding and Joining
    • /
    • 제27권3호
    • /
    • pp.92-96
    • /
    • 2009
  • Metallic sandwich plate has many good properties such as high specific stiffness, high specific strength, good impact absorptivity, effective thermal insulation and soundproofing. In our study, a new bonding method, 3-layer roll projection welding, is introduced to fabricate the metallic sandwich plate. The new method uses a pair of roll electrodes like the seam welding, and projection welding is made at two internal interfaces of the 3-layer weldment consisting of a structured inner sheet and a pair of skin sheets. During the welding process, skin sheet temperature are measured to produce metallic sandwich plate with uniform and good quality. But it is difficult to observe or measure the temperature at the welding points during welding process because the welding points exist at the internal interfaces. Therefore FEM numerical analysis using ABAQUS is conducted to estimate the generated heat at the welding points with different welding conditions.

Ant lion optimizer for optimization of finite perforated metallic plate

  • Chaleshtaria, Mohammad H. Bayati;Jafari, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제69권6호
    • /
    • pp.667-676
    • /
    • 2019
  • Minimizing the stress concentration around hypotrochoid hole in finite metallic plates under in-plane loading is an important consideration in engineering design. In the analysis of finite metallic plate, the effective factors on stress distribution around holes include curvature radius of the corner of the hole, hole orientation, plate's aspect ratio, and hole size. This paper aims to investigate the impact of these factors on stress analysis of finite metallic plate with central hypotrochoid hole. To obtain the lowest value of stress around a hypotrochoid hole, a swarm intelligence optimization method named ant lion optimizer is used. In this study, with the hypothesis of plane stress circumstances, analytical solution of Muskhelishvili's complex variable method and conformal mapping is employed. The plate is taken into account to be finite, isotropic and linearly elastic. By applying suitable boundary conditions and least square boundary collocation technique, undefined coefficients of stress function are found. The results revealed that by choosing the above-mentioned factor correctly, the lowest value of stress would be obtained around the hole allowing to an increment in load-bearing capacity of the structure.

Development of Metallic Bipolar Plate Material with W-addition in Austenitic Stainless Steel for PEMFC Environment

  • Kim, Kwang Min;Koh, Sung Ung;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • 제5권5호
    • /
    • pp.153-159
    • /
    • 2006
  • Austenitic stainless steels with addition of various amounts of Mo and W were evaluated in terms of corrosion and contact resistance to determine optimum alloy composition of metallic bipolar plate for PEMFC. The corrosion property was evaluated by both acid fume exposure test at $130^{\circ}C$ and by electrochemical polarization tests in $H_3PO_4$ solution at $80^{\circ}C$. Austenitic stainless steel with proper amount of Mo and W demonstrated not only good corrosion resistance but also low contact resistance. Analyses on the passive film show that partial substitution of Mo by W enhances passive film stability and repassivation property. Test results suggest that austenitic stainless steel with 2 wt%Mo and 4 wt%W has optimum composition for metallic bipolar plate used in PEMFC.

골 접촉 곡선형 금속 고정 시스템 구현 (Implementation of curved type a metallic plate system at the Bone contact)

  • 김정래
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권5호
    • /
    • pp.285-292
    • /
    • 2007
  • 본 논문은 정형외과영역인 대퇴부에 고정하여 사용하는 금속판으로 골 고정 골절치료의 유합술 골절치료를 할 수 있도록 구성하였는데, 사용되는 치료방법은 견고하고, 안정적이며, 역동적인 생물학적 금속판으로 고정 골수강 내 고정술을 적용되도록 견고한 골접촉 곡선형 시스템을 분석하였다. 금속판은 두 가지 유형으로 장형과 단형으로 구성되고, 금속판의 굴곡이 구조적이고 기하학적으로 경성 및 강도가 고루 분포하도록 최적화 하였다. 장 플레이트의 골접촉에 따른 곡선형으로 굽힙강도는 11,000N 이고, 단 플레이트의 골접촉에 따른 곡선형으로 굽힙강도는 6,525N 이며, 금속판에 골편간 압박을 주는 인장강도는 $1573N/m^2,\;1539N/m^2$정도이다. 금속판은 곡선부와 금속판부의 두 가지 부분으로 나뉘어져 있는데, 곡선부만 있는 단형과 밑 부분의 금속판이 달려있는 장형으로 진행되며, 곡선부의 단형은 전체적인 Profile이 낮고, 금속판이 달려있는 장형은 슬리브의 일체형으로 Profile보다 약간 높아져서 있다. 본 논문의 결과로 제공되는 것은 Hip Implant의 Revision case에 있어 보완뿐만 아니라 Hip Neck Fracture 경우에 사용되었던 Compression Hip Screw의 사용이 가능할 것으로 예상된다.

  • PDF

용융탄산염 연료전지용 초정밀 금속분리판 제작을 위한 굽힘 공정 최적화 (Optimization of Bending Process for the Fabrication of Ultra Precision Metallic Bipolar Plate for Molten Carbonate Fuel Cell)

  • 이창환;류승민;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.345-348
    • /
    • 2008
  • Metallic bipolar plate for molten carbonate fuel cell(MCFC) is composed of the shielded slot plate and the center plate. Among these, the center plate plays an important role in gas sealing. Therefore, manufacturing of the center plate is considered one of the key issues in MCFC. The center plate is manufactured by bending process. In bending process, springback and recoiling are two main problems. The aim of this article is to optimize the bending process of the center plate regardless of springback and recoiling. To achieve this goal, we proposed the punch having step to reduce springback and recoiling. Using finite element method and $L_9$ orthogonal array, we determined the main factors in the center plate bending process. And we found the optimal bending process condition for the MCFC center plate.

  • PDF

연면방전에 미치는 도전층의 영향에 관한 연구 (A study on the effects of a conducting metallic barrier on the surface creepage flash over discharge)

  • 정성계
    • 전기의세계
    • /
    • 제17권3호
    • /
    • pp.7-28
    • /
    • 1968
  • When a insulator plate is inserted to the discharge path of a space discharge gap in which the field strength is not uniform, the spark voltage under the atmospheric pressure between the electrodes decreases or rises according to the position of the insulating plate. Also it is reported that if a metallic barrier plate is inserted to the discharge path of the same space discharge gap, similar variations of spark voltage are found. Speaking briefly, mensioned above are the spark voltage characteristics when an insulator or metallic barrier is inserted to the space discharge gap. Also some experimental results, concerning to the surface creepage flash over characteristics at the case when an insulator barrier is inserted to the discharge path of a surface creepage discharge gap, were reported by Peek. But up to now there are no reports on surface flash over voltage characteristics at the case when a metallic barrier is inserted to the surface creepage gap. In this study the effects of a conducting metallic barrier inserted to the path of a surface creepage discharge gap on the flash over voltage characteristics are investigated theoretically and experimentally, and got some important results, clearing the effects of the position and width of a conducting barrier is inserted, the surface flash over voltage characteristics appear as an Inverse N or W Characteristics. Such theoretical or experimental results may have some relation not only with the effects of dry belt and snow on suspension insulators, but also with the effects of dirty zone or water drops on the surface creepage flash over voltage.

  • PDF

Theoretical and Numerical Study of Cylindrical-vector-mode Radiation Characteristics in Periodic Metallic Annular Slits and Their Applications

  • Kim, Hyuntai;Jeong, Yoonchan
    • Current Optics and Photonics
    • /
    • 제2권5호
    • /
    • pp.482-487
    • /
    • 2018
  • We investigate the radiation characteristics of radially polarized light and azimuthally polarized light through plasmonic subwavelength-scale annular slit (PSAS) structures, by means of both theoretical and numerical methods. Effective-medium theory was utilized to analyze the characteristics of PSAS structures, and the corresponding results showed that PSAS structures can function as a metallic medium for azimuthally polarized light, or as a low-loss dielectric medium for radially polarized light. Numerical calculations based on the finite-element method were also performed, to verify the theoretical analyses. It turned out that the numerical results supported the theoretical results. Moreover, we exploited the PSAS structures in novel nanophotonic elements with dual functionalities that could selectively focus or pass/block incident light, depending on its polarization state. For example, if PSAS structures were implemented in the dielectric region of a metallic Fresnel zone plate, the modified zone plate could function as a blocking element to azimuthally polarized light, yet as a focusing element to radially polarized light. On the contrary, if PSAS structures were implemented in the metallic region of a metallic Fresnel zone plate (i.e. the inverted form of the former), it could function as a focusing element to azimuthally polarized light, yet as a simple transparent element to radially polarized light.

고분자 전해질 연료전지 금속분리판용 316L 스테인리스강의 양극작동조건에서 염화물 농도에 따른 부식 특성 (Corrosion Characteristics of 316L Stainless Steel with Chloride Concentrations in Cathode Operating Conditions of Metallic Bipolar Plate for PEMFC)

  • 신동호;김성종
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.435-450
    • /
    • 2021
  • The interest in eco-friendly energy is increasing, and polymer electrolyte membrane fuel cell (PEMFC) is attracting attention as alternative power sources. Research on metallic bipolar plates, a fuel cell component, is being actively conducted. However, since the operating conditions of PEMFC, in which sulfuric acid (H2SO4) and hydrofluoric acid (HF) are mixed, are strong acidity, the durability of the metallic bipolar plate is very important. In this research, the electrochemical characteristics and corrosion damage behavior of 316L stainless steel, a material for metallic bipolar plates, were analyzed through potentiostatic corrosion tests with test times and chloride concentrations. As the test times and chloride concentrations increased, the current density and corrosion damage increased. As a result of observation with scanning electron microscope(SEM) and 3D microscope, both the depth and width of pitting corrosion increased with increases in test times and chloride concentrations. In particular, the pitting corrosion damage depth at test conditions of 6 hours and 1000 ppm chloride increased the most. The growth of the pitting corrosion damage was not directly proportional to time and increased significantly after a certain period.

저온 PEMFC용 금속분리판 코팅의 내구 특성 연구 (Coating Durability of Metal Bipolar plate for Low Temperature PEMFC)

  • 강성진;전유택
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.82.2-82.2
    • /
    • 2010
  • The development of bipolar plate having high efficiency and chemical properties has a major impact on fuel cell applications commercialization. Even though graphite bipolar plate has high electric conductivity and chemical resistance, it has demerits about mass production and brittle property for commercialization. Hence, metallic bipolar plate can be substitute for fuel cell bipolar plate. Although its inadequate corrosion behavior under PEMFC environment lead to a deterioration of membrane by dissolved metal ions, metallic bipolar plate for PEMFC is more suitable for automotive and residential power generation system because of its high mechanical strength, low gas permeability and applicability to mass production. Therefore, several types of coating has been applied to prevent corrosion and oxide film growth and to achieve more high durability. This work presents durability of coated metal bipolar plate for low temperature PEMFC which made for fuel cell vehicle. This results showed surface treatment increase long-term durability, even electric conductivity and corrosion resistance.

  • PDF