• Title/Summary/Keyword: Metallic can

Search Result 841, Processing Time 0.024 seconds

Theoretical and Numerical Study of Cylindrical-vector-mode Radiation Characteristics in Periodic Metallic Annular Slits and Their Applications

  • Kim, Hyuntai;Jeong, Yoonchan
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.482-487
    • /
    • 2018
  • We investigate the radiation characteristics of radially polarized light and azimuthally polarized light through plasmonic subwavelength-scale annular slit (PSAS) structures, by means of both theoretical and numerical methods. Effective-medium theory was utilized to analyze the characteristics of PSAS structures, and the corresponding results showed that PSAS structures can function as a metallic medium for azimuthally polarized light, or as a low-loss dielectric medium for radially polarized light. Numerical calculations based on the finite-element method were also performed, to verify the theoretical analyses. It turned out that the numerical results supported the theoretical results. Moreover, we exploited the PSAS structures in novel nanophotonic elements with dual functionalities that could selectively focus or pass/block incident light, depending on its polarization state. For example, if PSAS structures were implemented in the dielectric region of a metallic Fresnel zone plate, the modified zone plate could function as a blocking element to azimuthally polarized light, yet as a focusing element to radially polarized light. On the contrary, if PSAS structures were implemented in the metallic region of a metallic Fresnel zone plate (i.e. the inverted form of the former), it could function as a focusing element to azimuthally polarized light, yet as a simple transparent element to radially polarized light.

Color Changes of Multi-Bubble Sonoluminescence Due to Metallic Ions in Water (금속 이온이 다중기포 Sonoluminescence 스펙트럼에 미치는 영향 연구)

  • Han, Moon-Su;Lee, Jae-Wook;Baek, Seung-Chan;Baek, Jung-Hwan;Kim, Young-H.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.111-117
    • /
    • 2010
  • Sonoluminescence (SL) is the light emitting phenomenon accompanied with ultrasonic cavitation in liquid. It attracts many interests because physics behind it remains uncertain and few applications have appeared. It has been known that the color of SL changes in solutions which include metallic ions. In the present work, colors of SL in alkali metallic and alkaline earth metallic ions were considered. RGB component was used to analyze the color of SL. By using RGB component, it was found that color of SL in metallic solution can be resolved into color of SL in pure water and flame color of metal which is different from high intensity color of line spectrum of alkaline earth metal. From this result, influence of metallic ion on SL and the temperature on violent collapsing of cavitation bubble was discussed.

Implementation of curved type a metallic plate system at the Bone contact (골 접촉 곡선형 금속 고정 시스템 구현)

  • Kim, Jeong-Lae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.285-292
    • /
    • 2007
  • This study was developed the metallic plate for fixation in the femur fracture for the orthopedic region and rigid fixation with plates has a firm place in fracture treatment. Most plates can be used for rigid as well as biological and dynamical fracture fixation. The device's designation and sizing has a specific with bending structural stiffness and strength, known meaning that is reliable regardless of the plate by the short type and long type. Short plate have a wrapping of femur and long plate have to preserve a pole of femur. The bending strength of the curved metallic long plate has to evaluate a 11,000N and The bending strength of the curved metallic short plate has to evaluate a 6,525N. The tensile stress through to press a plate is $1573N/m^2\;and\;1539N/m^2$. The device can be used to support Revision case of Hip Implant and to use a case of Hip screw compression of Hip Neck Fracture.

  • PDF

Fabrication of Metallic Sandwich Plates with Inner Dimpled Shell Structure and Static Bending Test (딤플형 내부구조 금속 샌드위치 판재의 제작 및 정적 굽힘 실험)

  • Seong Dae-Yong;Jung Chang-Gyun;Yoon Seok-Joon;Lee Sang-Hoon;Ahn Dong-Gyu;Yang Dong-Yol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.653-661
    • /
    • 2006
  • Metallic sandwich plates with various inner cores have important new features with not only ultra-light material characteristics and load bearing function but also multifunctional characteristics. Because of production possibility on the large scale and a good geometric precision, sandwich plates with inner dimpled shell structure from a single material have advantages as compared with other solid sandwich plates. Inner dimpled shell structures can be fabricated with press or roll forming process, and then bonded with two face sheets by multi-point resistance welding or adhesive bonding. Elasto-plastic bending behavior of sandwich plates have been predicted analytically and measured. The measurements have shown that elastic perfectly plastic approximation can be conveniently employed with less than 10% error in elastic stiffness, collapse load, and energy absorption. The dominant collapse modes are face buckling and bonding failure after yielding. Sandwich plates with inner dimpled shell structure can absorb more energy than other types of sandwich plates during the bending behavior.

A Study on Resin Flow to Make a Replica Using a Silicone Mold

  • Bae, Kum-Soo;Rhee, Sang-Yong;Kim, Young-Baek
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.94-99
    • /
    • 2008
  • The replica of silicone mold which can produce the test samples and the market-displayable products without making expensive metallic patterns is advantageous because it incurs less cost than the ordinary method that manufactures the products from the metallic patterns. However, the production of the products using silicone mold should require a technician with professional knowledge about the metallic patterns every time. Thus we tried to judge whether a forming analysis software for iron molding can be applied to silicon molding in this paper. In other words, this paper suggests a method to use a computer simulator from the designing step of the silicone mold, which is the most important part in making replica using simple silicone molds to the step of pouring the cast. The paper shows that if the know-how of a professional worker is provided in advance, an amateur worker can easily produce silicone molds of the best quality, the defective rate of the products will be decreased, and the replica will have a more complete status. By doing so, we suggested a possibility for reducing the delivery time at the production sites and for improving the product quality.

Influences of Coatings and Solution Corrosivity on Cathodic Protection of Metallic Materials

  • Yoo, Y.R.;Chang, H.Y.;Jin, T.E.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.106-111
    • /
    • 2006
  • Painting has protected metallic stack but the paint films may be degraded and corrosion problem can be arisen. To protect the painted metal stack, cathodic protection can be applied. If cathodic protection is applied to bare metal, only small area may be protected. However, if cathodic protection is applied to painted metal surface, large area can be protected and the lifetime of paint films can be extended. High corrosion resistant alloys were corroded at a Flue Gas Desulfurization (FGD) facility of power plant within a short period and thus cathodic protection can be used to protect these metals. On the base of computer simulation, if cathodic protection is applied to bare metal in a FGD environment, it was estimated that applied current could almost be spent to protect area near the anode. However, if cathodic protection is applied to high resistant-coated metal, the much larger area from the anode could be effectively protected.

Energy harvesting techniques for remote corrosion monitoring systems

  • Kim, Sehwan;Na, Ungjin
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.555-567
    • /
    • 2013
  • An Remote Corrosion Monitoring (RCM) system consists of an anode with low potential, the metallic structures against corrosion, an electrode to provide reference potential, and a data-acquisition system to ensure the potential difference for anticorrosion. In more detail, the data-acquisition (DAQ) system monitors the potential difference between the metallic structures and a reference electrode to identify the correct potential level against the corrosion of the infrastructures. Then, the measured data are transmitted to a central office to remotely keep track of the status of the corrosion monitoring (CM) system. To date, the RCM system is designed to achieve low power consumption, so that it can be simply powered by batteries. However, due to memory effect and the limited number of recharge cycles, it can entail the maintenance fee or sometimes cause failure to protect the metallic structures. To address this issue, the low-overhead energy harvesting circuitry for the RCM systems has designed to replenish energy storage elements (ESEs) along with redeeming the leakage of supercapacitors. Our developed energy harvester can scavenge the ambient energy from the corrosion monitoring environments and store it as useful electrical energy for powering local data-acquisition systems. In particular, this paper considers the energy harvesting from potential difference due to galvanic corrosion between a metallic infrastructure and a permanent copper/copper sulfate reference electrode. In addition, supercapacitors are adopted as an ESE to compensate for or overcome the limitations of batteries. Experimental results show that our proposed harvesting schemes significantly reduce the overhead of the charging circuitry, which enable fully charging up to a 350-F supercapacitor under the low corrosion power of 3 mW (i.e., 1 V/3 mA).

Study on the Recovery of Metallic Aluminum in Black Dross generated from the Used Beverage Cans (UBC) Recycling Process with Crushing Mechanism (파쇄 기구에 따른 알루미늄 캔 재자원화 공정 중 발생한 블랙 드로스 내 알루미늄 회수에 관한 연구)

  • Han, Chulwoong;Son, Seong Ho;Ahn, Byung-Doo;Kim, Dae-Guen;Lee, Man Seung;Kim, Yong Hwan
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.71-78
    • /
    • 2017
  • This study investigated the recovery of metallic aluminium in the black dross generated from used beverage can recycling process with crushing mechanism such as compression and impact. The as-received Al black dross had a spherical shape, and its size was about 10~40 mm. Also, The X-ray diffraction pattern showed that the main contents of black dross are composed of halite (NaCl), sylvite (KCl), spinel ($MgAl_2O_4$) and corundum ($Al_2O_3$). A metallic aluminium recovery test was performed using jaw crusher and hammer mill having different crushing mechanism. It was analysed that Jaw crushing process can separate into metallic aluminium and non metallic constituents. However, hammer milling process shows significant difference on the separation results. It was found that jaw crushing process was effective for recovery of metallic aluminium in the black dross than that of hammer milling process.

Removal and Separation of Metallic Constituents from the By-product Recovered from Gold Mine Tailings (금(金) 광산(鑛山) 폐광미(廢鑛尾)로부터 회수(回收)된 금속광물(金屬鑛物) 부산물(副産物) 중의 금속성분(金屬成分) 분리(分離), 제거연구(除去硏究))

  • Youn, Ki-Byoung
    • Resources Recycling
    • /
    • v.19 no.3
    • /
    • pp.9-15
    • /
    • 2010
  • Domestic gold mine tailings, generally, contain a lot of non-metallic silica and clay minerals. These minerals can be separated from the tailings by various physical separation methods and used as raw materials for cements and ceramic products. In these physical separation procedures, metallic complex sulfides, in which Au and metallic constituents such as Pb, As and Fe were concentrated, were obtained as a by-product. These metallic constituents should be removed or separated from the by-product to extract Au efficiently. In this work, removal and separation processes of Pb, As, and Fe from the by-product were investigated. Pb was removed to under 3% by using alkaline oxidative leaching at the leaching condition of $120^{\circ}C$, 2M NaOH, 100psi $Po_2$, 250r.p.m., 4 wt.% solid and 30 min. leaching time. The leached residue was roasted and separated magnetically to obtain a non-magnetic product contained <0.2% As, <3% Fe and high concentrated Au more than 8,000 ppm.

Improvement on resolution of mono-filament wire (초음파 팬텀 내 모노필라멘트의 해상력 개선에 대한 연구)

  • Ma, Sang-Chull;Kong, Young-Kun
    • Journal of radiological science and technology
    • /
    • v.26 no.2
    • /
    • pp.49-56
    • /
    • 2003
  • The purposes of this study are to improve the ultrasound resolution of various nylon and metallic mono-filament wires, therefore, it was tested that it analyze on nylon mono-filament wire of 0.1 mm in A Co.'s ultrasonic phantom and synthesis of C15 g tissue mimicking materials(TMM), analyze resolution of nylon and metallic mono-filament wires in water and TMM. The results obtained were summarized as follows: 1. Metallic mono-filament wire of 0.1 mm and nylon mono-filament wire of 0.12 mm, 180 denier showed that it cleared dot echo pattern. 2. Metallic and nylon mono-filament wire of 0.2 mm showed that it cleared comet tail echo by reverberation artifact. 3. Nylon and metallic mono-filament wire of 0.1 mm showed that it can used for dead zone and axial resolution test. 4. Nylon mono-filament wire compared with metallic mono-filament wire showed that it satisfy elasticity and construction. 5. Degree of hardness of na not changed mono-filament's echo textures.

  • PDF