• Title/Summary/Keyword: Metallic Cavity

Search Result 41, Processing Time 0.022 seconds

Long Range UHF RFID Tag with a Rectangular Metallic Cavity Structure

  • Yeo, Jun-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.121-126
    • /
    • 2010
  • A long range UHF RFID tag with a rectangular metallic cavity structure is proposed for various applications with metallic objects. The proposed tag consists of a rectangular metallic cavity structure and a folded dipole antenna which is located on top of the cavity. The tag is designed for Korean UHF RFID band(910~914 MHz) and the bandwidth, which satisfies the -10 dB input reflection coefficient requirement, is approximately 1.3 %(904~916 MHz). Measurement demonstrates that the proposed tag shows long reading range up to 15 m when it is placed on a metallic plate.

Triple-Mode Characteristics of Cylindrical Cavity Loading a Cylindrical Dielectric Resonator

  • Lee, Seung-Mo;Kim, Cha-Man;Park, Jong-Chul;Kim, In-Ryeol;Oh, Soon-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.630-636
    • /
    • 2016
  • In this paper, a novel triple-mode cavity structure, designed for compactness and operating at 850 MHz, is analyzed. A cylindrical dielectric resonator is loaded into a metallic cylindrical cavity. Previous study has been focused on the analysis of the cylindrical dielectric resonator, but in this paper, the effect of the cylindrical metallic cavity has been analyzed. Enclosing the dielectric resonator inside the metallic cavity increases the resonant frequency of the dielectric resonator; however, this increases the quality factor and introduces the possibility of installing coupling screws. The principle of generation of triple-mode was investigated by parametric analysis. The generated triple-mode is TE011 mode and two orthogonally generated HEM121 modes. By adjusting the radius of the dielectric resonator, the height of the dielectric resonator, or the radius of the cylindrical metallic cavity, three modes could be coincided. However, the height of the metallic cavity keeps three modes separated. The mode characteristics of the proposed cavity are analyzed using a full-wave electromagnetic (EM) simulation. The proposed triple-mode cavity could be developed to triple-mode filter using a coupling screw, and the commercial application for the miniaturized filter below 1 GHz could be expected.

A Study of UHF RFID Metallic Tag Design for Long Reading Range Using a Cavity Structure (캐비티 구조를 사용한 장거리 인식용 UHF RFID 금속용 태그 설계에 관한 연구)

  • Lee, Jin-Seong;Lee, Kyoung-Hwan;Yeo, Jun-Ho;Chung, You-Chung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1468-1474
    • /
    • 2009
  • This paper shows an UHF RFID metallic tags using a Cavity structure for a long reading range. The reading range of a general passive tag is limited because the EIRP of a reader system is limited as 36㏈m by ISO 18000-6. To extend the reading range, the tag antenna should have a high gain antenna structure. The designed tag antenna is recognized over 10m range with a Cavity structure. The directivity pattern and the performance of the tag with the Cavity structure is stable when it is attached to a metallic object. The designed tag antenna has two kinds as cavity thickness. The sizes of designed tag antennas are $176\;{\times}\;52\;{\times}\;10\;mm$ and $176\;{\times}\;61\;{\times}\;30mm$ They can be attached to a large metallic materials and heavy equipments. The measured reading ranges of the tags are about 11m and 15m when they are attached to a metallic object.

Analysis of Resonant Characteristics for a Metallic Shielding Enclosure with a PCB Source (PCB 파원이 내장된 금속 함체의 공진 특성 해석)

  • Cho, Byung-Doo;Kim, Ki-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.507-514
    • /
    • 2012
  • This paper proposed the analysis method of the cavity resonance characteristics for a metallic enclosure with a PCB trace source. In order to calculation the electromagnetic fields inside the cavity, coupled integral equations for a current distribution on the PCB trace and an aperture electric field distribution on the boundary of the PCB dielectric are derived and solved by applying Galerkin's method of moments. The result show that the resonant characteristics of the metallic enclosure are fairly good agreement with the simulation(HFSS) and the measured results. The resonant frequencies of the metallic enclosure with the PCB trace are changed by the PCB trace location inside of the cavity. In order to check the validity of the theoretical analysis, the calculated return losses are compared with the measured results.

Resonance Characteristics of a Metallic Enclosure Having Sub-Cavity with Lossy Dielectric Materials (부공동에 손실 유전체를 충진한 함체 케이스의 공진 특성)

  • Lim, Sung-Min;Jung, Sung-Woo;Kim, Ki-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.936-942
    • /
    • 2009
  • This paper presents the delivered power and reflection coefficient in metallic shielding enclosure with a sub-cavity, which are evaluated with the method of moments, sad describes a method for controlling the resonance characteristics of the metallic cavity by putting lossy dielectric material in the sub-cavity. In this paper we introduce carbon polystyrene-foam as lossy dielectric material and observe it's effects of reduction when the dimensions of the sub-cavity and permittivity of lossy dielectric material are changed. The results show that the reduction of the electromagnetic radiation can be achieved by controlling the amount of carbon in lossy dielectric material and the dimensions of the sub-cavity. The theoretical analysis is verified by the measured delivered power.

A New Resonance Prediction Method of Fabry-Perot Cavity (FPC) Antennas Enclosed with Metallic Side Walls

  • Kim, Dong-Ho;Yeo, Jun-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.220-226
    • /
    • 2011
  • We have proposed a new method to accurately predict the resonance of Fabry-Perot Cavity (FPC) antennas enclosed with conducting side walls. When lateral directions of an FPC antenna are not blocked with metallic walls, the conventional technique is accurate enough to predict the resonance of the FPC antenna. However, when the FPC antenna has side walls, especially for case with only a short distance between the walls, the conventional prediction method yields an inaccurate result, inevitably requiring a tedious, time-consuming tuning process to determine the correct resonant height to provide the maximum antenna gain in a target frequency band using three-dimensional full-wave computer simulations. To solve that problem, we have proposed a new resonance prediction method to provide a more accurate resonant height calculation of FPC antennas by using the well-known resonance behavior of a rectangular resonant cavity. For a more physically insightful explanation of the new prediction formula, we have reinvestigated our proposal using a wave propagation characteristic in a hollow rectangular waveguide, which clearly confirms our approach. By applying the proposed technique to an FPC antenna covered with a partially reflecting superstrate consisting of continuously tapered meander loops, we have proved that our method is very accurate and readily applicable to various types of FPC antennas with lateral walls. Experimental result confirms the validness of our approach.

A Study on the Micro Forming of Al-based Superplastic Alloy and Zr-BMG for the Cavity Position (Al5083 초소성 합금과 Zr-BMG의 Cavity 위치에 따른 마이크로 성형연구)

  • Son, S.C.;Park, K.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.258-262
    • /
    • 2008
  • Micro forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). In this study, the micro forming property was studied, using Al5083 superplastic alloy with micro grain, suitable for the micro forming process and Zr-BMG amorphous with pseudo-superplastic phenomena in the supercooled liquid state. Micro forming experiments under stastic load status showed that distortion by slip and spin of the grain system and slip inside the grain was observed in the Al5083 superplastic alloy. In case of Zr-BMG, because there is no grain, the distribution of the forming property was similar to the load distribution between punch and metal.

  • PDF

Dynamics of Nanopore on the Apex of the Pyramid

  • Choi, Seong-Soo;Yamaguchi, Tokuro;Park, Myoung-Jin;Kim, Sung-In;Kim, Kyung-Jin;Kim, Kun-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.187-187
    • /
    • 2012
  • In this report, the plasmonic nanopores of less than 5 nm diameter were fabricated on the apex of the pyramidal cavity array. The metallic pyramidal pit cavity can also utilized as the plasmonic bioreactor, and the fabricated Au or Al metallic nanopore can provide the controllable translocation speed down using the plasmonic optical force. Initially, the SiO2 nanopore on the pyramidal pit cavity were fabricated using conventional microfabrication techniques. Then, the metallic thin film was sputter-deposited, followed by surface modification of the nanometer thick membrane using FESEM, TEM and EPMA. The huge electron intensity of FESEM with ~microsecond scan speed can provide the rapid solid phase surface transformation. However, the moderate electron beam intensity from the normal TEM without high speed scanning can only provide the liquid phase surface modification. After metal deposition, the 100 nm diameter aperture using FIB beam drilling was obtained in order to obtain the uniform nano-aperture. Then, the nanometer size aperture was reduced down to ~50 nm using electron beam surface modification using high speed scanning FESEM. The followed EPMA electron beam exposure without high speed scanning presents the reduction of the nanosize aperture down to 10 nm. During these processes, the widening or the shrinking of the nanometer pore was observed depending upon the electron beam intensity. Finally, using 200 keV TEM, the diameter of the nanopore was successively down from 10 nm down to 1.5 nm.

  • PDF

A study on CIM construction for the plastic fan design manufacturing (플라스택 팬 설계, 제조의 CIM 구축을 위한 연구)

  • Choi, Yang-Ho;Lee, Yong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1470-1479
    • /
    • 1997
  • In this study, the plastic fan with high efficiency and low noise was designed and the capacity of the wind and the wind pressure were analysed and verified by CAE. After designing the metallic mold using the metallic mold design data, and the the metallic mold design was reformed by analysing the process of the material stream and injection filling by CAE. Also the metallic mold cutting data were formed using the metallic mold design data. These cutting data was used to produce the fan electrode by a machining center and then this electrode were used to manufacture the metallic mold by cutting the fan cavity by an electrical spark machine. The purpose of this study is to find out the sub-optimal condition on the productivity and improvement in quality of the plastic fan by integrating a series of this process with a computer.

A Erosion Aspect of SS400 by Cavity Collapse Fluctuation in Marine Sludge Oil (선박 슬러지유 환경에서의 캐비티 붕괴유동에 따른 SS400의 침식양상)

  • 한원희;이진열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.328-336
    • /
    • 2002
  • decrease in efficiency due to cavity fluid fluctuation. The purpose of this study is to examine erosion aspect on the SS400 specimen by cavitation and the effect of impact pressure generated from the demolition of the cavity of ultrasonic vibrator horn in the marine sludge oil environment. The erosion damage of specimen was investigated mainly on weight loss, weight loss rate and maximum erosion rate with variation of the vibration amplitude of $50{\mu}m, 24{\mu}m$ as well as the change of space between transducer horn and specimen. The experimental results showed that as the space between ultrasonic vibrator horn and specimen disk increased, the weight loss and weight loss rate decreased and the values were larger in SFO than in SLO. These findings would help interpret the aspect of cavitation erosion damage in metallic materials of different operating environment and material characteristics.