• Title/Summary/Keyword: Metal-biochar

Search Result 35, Processing Time 0.017 seconds

Competitive Adsorption Characteristics of Cupper and Cadmium Using Biochar Derived from Phragmites communis (갈대 biochar의 구리 및 카드뮴 경쟁흡착특성)

  • Park, Jong-Hwan;Kim, Seong-Heon;Shin, Ji-Hyun;Kim, Hong Chul;Seo, Dong Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.1
    • /
    • pp.21-29
    • /
    • 2015
  • BACKGROUND: Heavy metal adsorptionnot only depends on biochar characteristics but also on the nature of the metals involved and on their competitive behavior for biochar adsorption sites. The goal of this study was to investigate the competitive absorption characteristics of Cu and Cd in mono-metal and binary-metal forms by biochar derived from Phragmites communis. METHODS AND RESULTS: Batch and column experiments were conducted to evaluate the competitive adsorption characteristics of the biocharfor Cu and Cd. In the batch experiments, the maximum adsorption capacity of Cd(63 mg/g) by biochar was higher than that for Cu (55 mg/g) in the mono-metal adsorption isotherm. On the other hand, the maximum Cu adsorption capacity (40 mg/g) by biochar was higher than that for Cd(25 mg/g) in the binary-metal adsorption isotherm. Cu was the most retained cations. Cd could be easily exchanged and substituted by Cu. The amounts of adsorbed metals in the column experiments were in the order of Cd (121 mg/g) > Cu (96 mg/g) in mono-metal conditions, and Cu (72 mg/g) > Cd (29 mg/g) in binary-metal conditions. CONCLUSION: Overall, the results demonstrated that competitive adsorption among metals increased the mobility of these metals. Particularly, Cd in binary-metal conditions lost its adsorption capacity most significantly.

Mg/Al Impregnated Biochar for the Removal and Recovery of Phosphates and Nitrate

  • Kim, Dong-Jin
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2019.10a
    • /
    • pp.134-134
    • /
    • 2019
  • Utilization of organic waste as a renewable energy source is promising for sustainability and mitigation of climate change. Pyrolysis converts organic waste to gas, oil, and biochar by incomplete biomass combustion. Biochar is widely used as a soil conditioner and adsorbent. Biochar adsorbs/desorbs metals and ions depending on the soil environment and condition to act as a nutrient buffer in soils. Biochar is also regarded as a carbon storage by fixation of organic carbon. Phosphorus (P) and nitrogen (N) are strictly controlled in many wastewater treatment plants because it causes eutrophication in water bodies. P and N is removed by biological and chemical methods in wastewater treatment plants and transferred to sludge for disposal. On the other hand, P is an irreplaceable essential element for all living organisms and its resource (phosphate rock) is estimated about 100 years of economical mining. Therefore, P and N recovery from waste and wastewater is a critical issue for sustainable human society. For the purpose, intensive researches have been carried out to remove and recover P and N from waste and wastewater. Previous studies have shown that biochars can adsorb and desorbed phosphates implying that biochars could be a complementary fertilizer. However, most of the conventional biochar have limited capacity to adsorb phosphates and nitrate. Recent studies have focused on biochar impregnated with metal salts to improve phosphates and nitrate adsorption by synthesizing biochars with novel structures and surface properties. Metal salts and metal oxides have been used for the surface modification of biochars. If P removal is the only concern, P adsorption kinetics and capacity are the only important factors. If both of P and N removal and the application of recovery are concerned, however, P and N desorption characteristics and bioavailability are also critical factors to be considered. Most of the researches on impregnated biochars have focused on P removal efficiency and kinetics. In this study, coffee waste is thermally treated to produce biochar and it was impregnated with Mg/Al to enhance phosphates and nitrate adsorption/desorption and P bioavailability to increase its value as a fertilizer. Kinetics of phosphates and nitrate adsorption/desorption and bioavailability analysis were carried out to estimate its potential as a P and N removal adsorbent in wasewater and a fertilizer in soil.

  • PDF

Adsorption Characteristics of Heavy Metals using Sesame Waste Biochar (참깨 부산물 Biochar의 중금속 흡착특성)

  • Choi, Ik-Won;Seo, Dong-Cheol;Kang, Se-Won;Lee, Sang-Gyu;Seo, Young-Jin;Lim, Byung-Jin;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.1
    • /
    • pp.8-15
    • /
    • 2013
  • Little research has been conducted to explore the heavy metal removal potential of biochar. The adsorption characteristics of heavy metals by sesame waste biochar (pyrolysis at $600^{\circ}C$ for 1 hour) as heavy metal absorbent were investigated. The sesame waste biochar was characterized by SEM-EDS and FT-IR, and heavy metal removal was studied using Freundlich and Langmuir equations. The removal rates of heavy metals were higher in the order of Pb>Cu>Cd>Zn, showing that the adsorption efficiency of Pb was higher than those of any other heavy metals. Freundlich and Langmuir adsorption isotherms were used to model the equilibrium adsorption data obtained for adsorption of heavy metals on biochar produced from sesame waste. Pb, Cu, Cd and Zn equilibrium adsorption data were fitted well to the two models, but Pb gave a better fit to Langmuir model. Heavy metals were observed on the biochar surface after adsorption by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Main functional groups were aromatic C=O ring (at $1160cm^{-1}$, $1384cm^{-1}$ and $1621cm^{-1}$) by FT-IR analysis. Thus, biochar produced from sesame waste could be useful adsorbent for treating heavy metal wastewaters.

Cu and Cd Sorption of the Biochar Derived from Coffee Sludge (커피 슬러지 바이오차의 Cu와 Cd 흡착제거 특성 연구)

  • Kim, Byung-Moon;Kang, Chang-Hwan;Yang, Jae-Kyu;Na, Jung-Kyun;Jung, Jong-Am;Jung, Hyung-Jin;Lim, Jin-Hwan;Ko, Kyung-Min;Kim, Wan-Hee;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.47-53
    • /
    • 2012
  • In this study, the adsorption of $Cu^{2+}$ and $Cd^{2+}$ from aqueous solution on the biochar derived from used coffee grounds at different pyrolysis temperatures has been investigated as a potential low-cost treatment method for heavy metal-containing waters. Three biochar samples prepared by heating coffee sludge at temperature of $300^{\circ}C$ (B300), $500^{\circ}C$ (B500), and $700^{\circ}C$ (B700) were tested for the adsorption capacity and kinetics of Cd and Cu. Also the influencing factor of heavy metal removal by ion exchange in terms of cation exchange capacity (CEC) of each biochar was measured. Adsorption of Ca and Cu by biochar produced at higher pyrolysis temperature showed higher adsorption capacity but the optimal pyrolysis temperature based on performance and economy was known as $500^{\circ}C$. Sorption of Cu and Cd by biochar followed a Langmuir model at pH 6~6.5, attributing mainly to surface sorption. The biochar was more effective in Cu and Cd sorption than activated carbon (AC), with BC 500 being the most effective, which indicates that sorption of Cd and Cu by coffee sludge biochar is partly influenced by chemical sorption on surface functional group as well as physical sorption.

A Study on the Removal of Heavy Metals in Soil by Sewage Sludge Biochar (하수슬러지의 Biochar특성을 이용한 토양내 중금속 제거 연구)

  • Kim, Hye-Won;Bae, Sunyoung;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.58-64
    • /
    • 2013
  • This study proposed a low temperature hydrothermal carbonization to treat and recycle sewage sludge and determined the optimal conditions for the biochar production. The physical and chemical properties of biochar were analyzed and its sorption capacity for heavy metals was evaluated. To produce biochar, 50 g of sewage sludge was heated at 220, 230, and $240^{\circ}C$ for 1, 2, 3, 5, 8, and 10 hours in a reactor. The optimal conditions to produce biochar was $230^{\circ}C$ and 8 hours. Sorption capacity tests were conducted for arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn) and nickel (Ni). Among them, lead was shown the highest heavy metal adsorption efficiency of biochar, followed by copper, cadmium, zinc, and nickel, but arsenic was hardly adsorbed overall.

Stabilization of Agricultural Soil Contaminated by Arsenic and Heavy Metals using Biochar derived from Buffalo Weed (단풍잎돼지풀 기반 바이오차를 이용한 비소 및 중금속 오염 농경지의 안정화)

  • Koh, Il-Ha;Kim, Jungeun;Kim, Gi Suk;Park, Mi Sun;Kang, Dae Moon;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.87-100
    • /
    • 2016
  • Biochar, which has high alkalinity, has widely studied for amendment of soil that contaminated with heavy metals. The aim of this study is assessment of amendment for arsenic and heavy metals contaminated acidic agricultural soil using biochar that derived from buffalo weed (A. trifida L. var. trifida). Pot experiments were carried out including analysis of soil solution, contaminants fractionation, soil chemical properties and plant (lettuce) uptake rate. Arsenic and heavy metals concentrations in soil solution showed relatively low in biochar added experiments when compared to the control. In the heavy metals fractionation in soil showed decrease of exchangeable fraction and increase of carbonates fraction; however, arsenic fractionations showed constant. Soil chemical properties indicated that biochar could induce recovery of soil quality for plant growth in terms of soil alkalinity. However, phosphate concentration in biochar added soil decreased due to Ca-P precipitation by exchangeable calcium from biochar. Arsenic and heavy metals uptake rate of plant in the amended experiment decreased to 50% when compared to the control. Therefore biochar derived from buffalo weed can be used as amendment material for agricultural soil contaminated with arsenic and heavy metals. Precipitation of As-Ca and metal-carbonates are major mechanisms for soil amendment using char.

Biochemical characterization of cotton stalks biochar suggests its role in soil as amendment and decontamination

  • Younis, Uzma;Athar, Mohammad;Malik, Saeed Ahmad;Bokhari, Tasveer Zahra;Shah, M. Hasnain Raza
    • Advances in environmental research
    • /
    • v.6 no.2
    • /
    • pp.127-137
    • /
    • 2017
  • Cotton is the major fiber crop in Pakistan that accounts for 2% of total national gross domestic product (GDP). After picking of cotton, the dry stalks are major organic waste that has no fate except burning to cook food in villages. Present research focuses use of cotton stalks as feedstock for biochar production, its characterization and effects on soil characteristics. Dry cotton stalks collected from agricultural field of Bahauddin Zakariya University, Multan, Pakistan were combusted under anaerobic conditions at $450^{\circ}C$. The physicochemical analysis of biochar and cotton stalks show higher values of % total carbon, phosphorus and potassium concentrations in biochar as compared to cotton stalks. The concentration of nitrogen was decreased in biochar. Similarly biochar had greater values of fixed carbon that suggest its role for carbon sequestration and as a soil amendment. The fourier transformation infrared spectroscopic spectra (FTIR) of cotton stalks and biochar exposed more acidic groups in biochar as compared to cotton stalks. The newly developed functional groups in biochar have vital role in increasing surface properties, cation exchange capacity, and water holding capacity, and are responsible for heavy metal remediation in contaminated soil. In a further test, results show increase in the water holding capacity and nutrient retention by a sandy soil amended with biochar. It is concluded that cotton stalks can be effectively used to prepare biochar.

Review of the use of activated biochar for energy and environmental applications

  • Lee, Hyung Won;Kim, Young-Min;Kim, Seungdo;Ryu, Changkook;Park, Sung Hoon;Park, Young-Kwon
    • Carbon letters
    • /
    • v.26
    • /
    • pp.1-10
    • /
    • 2018
  • Biochar obtained from the thermal conversion of biomass has high potential as a substitute material for activated carbon and other carbon-based materials because it is economical, environmentally friendly, and carbon-neutral. The physicochemical properties of biochar can also be controlled by a range of activation methods such as physical, chemical, and hydrothermal treatments. Activated biochar can be used as a catalyst for the catalytic pyrolysis of a biomass and as an absorbent for the removal of heavy metal ions and atmospheric pollutants. The applications of biochar are also expanding not only as a key component in producing energy storage materials, such as supercapacitors, lithium ion batteries, and fuel cells, but also in carbon capture and storage. This paper reviews the recent progress on the activation of biochar and its diverse present and future applications.

Production Method of Biochar-bead from Biochar Powder and Its Application for the Removal of Heavy Metal (분말 바이오-숯으로부터 중금속 오염수 처리용 바이오-숯 비드 제조 및 적용)

  • Choi, Yu-Lim;Roh, Hoon;Lee, Kyu-Beom;Shin, Bok-Su;Joo, Wan-Ho;Kim, Nam-Kook;Kim, Jin-Hong;Yang, Jae-Kyu;Reddy Koduru, Janardhan;Cho, Sung-Heui;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.127-132
    • /
    • 2015
  • In this study, biochar-bead, prepared from biochar powder derived from woody biomass, was used for removal cadmium ion in aqueous solution. Various mixing ratios of alginate solution and biochar powder were used for the production of round shape biochar-bead. An optimum mixing ratio was selected as 1.5% alginate solution and 20 wt% biochar. The produced biochar-bead was characterized by SEM, FT-IR, and XRD analyses. The adsorption capacity of Cd(II) by biochar-bead was found to be 9.72 mg/g which was higher than that by GAC and PAC. According to this study, round shape biochar-bead is expected to be used as a media for reactive barrier or water filtration.

Heavy Metal Stabilization in Soils using Waste Resources - A Critical Review (폐자원을 이용한 중금속 오염토양의 안정화 - 총설)

  • Lim, Jung Eun;Moon, Deok Hyun;Kim, Kwon-Rae;Yang, Jae E;Lee, Sang Soo;Ok, Yong Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.2
    • /
    • pp.157-174
    • /
    • 2015
  • Stabilization of metals in contaminated soils using various waste materials has been reported. Alkaline materials (limes, shells, industrial byproducts, etc.), phosphorous (P) containing materials (animal bones, phosphate rock, etc.), organic materials (composts, manures, biochars, etc.) and others (zerovalent iron, zeolite, etc.) were widely evaluated to ensure its effectiveness/applicability of stabilization of metals in soils. Stabilization mechanisms of those materials above were partially revealed, but the related literatures are still lacked and not sufficient for approaching to long-term stability/applicability in the field. The aims of this review are to summarize current knowledge of metal stabilization in contaminated soils using various waste materials and to suggest a direction for future field research.