• Title/Summary/Keyword: Metal-binding protein

Search Result 100, Processing Time 0.025 seconds

Evaluation of Th1/Th2-Related Immune Response against Recombinant Proteins of Brucella abortus Infection in Mice

  • Im, Young Bin;Park, Woo Bin;Jung, Myunghwan;Kim, Suk;Yoo, Han Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1132-1139
    • /
    • 2016
  • Brucellosis is a zoonotic disease caused by Brucella, a genus of gram-negative bacteria. Cytokines have key roles in the activation of innate and acquired immunities. Despite several research attempts to reveal the immune responses, the mechanism of Brucella infection remains unclear. Therefore, immune responses were analyzed in mice immunized with nine recombinant proteins. Cytokine production profiles were analyzed in the RAW 264.7 cells and naive splenocytes after stimulation with three recombinant proteins, metal-dependent hydrolase (r0628), bacterioferritin (rBfr), and thiamine transporter substrate-binding protein (rTbpA). Immune responses were analyzed by ELISA and ELISpot assay after immunization with proteins in mice. The production levels of NO, TNF-α, and IL-6 were time-dependently increased after having been stimulated with proteins in the RAW 264.7 cells. In naive splenocytes, the production of IFN-γ and IL-2 was increased after stimulation with the proteins. It was concluded that two recombinant proteins, r0628 and rTbpA, showed strong immunogenicity that was induced with Th1-related cytokines IFN-γ, IL-2, and TNF-α more than Th2-related cytokines IL-6, IL-4, and IL-5 in vitro. Conversely, a humoral immune response was activated by increasing the number of antigen-secreting cells specifically. Furthermore, these could be candidate diagnosis antigens for better understanding of brucellosis.

Cloning of Pig Kidney cDNA Encoding an Angiotensin I Converting Enzyme (돼지 신장의 Angiotensin I Converting Enzyme cDNA 클로닝)

  • Yoon, Jang-Ho;Yoon, Joo-Ok;Hong, Kwang-Won
    • Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.293-297
    • /
    • 2006
  • Angiotensin converting enzyme(ACE) is a zinc-containing dipeptidase widely distributed in mammalian tissues and is thought to play a significant role in blood pressure regulation by hydrolyzing angiotensin I to the potent vasoconstrictor, angiotensin II. Recently, the presence of ACE in pig ovary was reported and the ACE from pig kidney was isolated and characterized. However no nucleotide sequence of the ACE gene from pig is yet known. We report here the cloning of the ACE cDNA from pig kidney by using the reverse transcriptase-polymerase chain reaction. The complete amino acid sequence deduced from the cDNA contains 1309 residues with a molecular mass of 150 kDa, beginning with a signal peptide of 33 amino acids. Amino acid sequence analysis showed that pig kidney ACE is also probably anchored by a short transmembrane domain located near the C-terminus. This protein contains a tandem duplication of the two homologous amino acid peptidase domain. Each of these two domains bears a putative metal-binding site (His-Glu-Met-Gly-His) identified in mammalian somatic ACE. The alignment of pig ACE amino acid sequence with human, rabbit, and mouse reveals that both two domains have been highly conserved during evolution.

Solid-Phase Refolding of Poly-Lysine fusion Protein of hEGF and Angiogenin (Poly-lysine이 연결된 hEGF와 angiogenin의 융합단백질의 고체상 재접힘)

  • Park, Sang-Joong;Ryu, Kang;Suh, Chang-Woo;Chai, Young-Gyu;Kwon, Oh-Byung;Park, Seung-Kook;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.153-157
    • /
    • 2002
  • A fusion protein, consisting of a human epidermal growth factor as the recognition domain and human angiogenin as the toxin domain, can be used as a targeted therapeutic against breast cancer cells among others. The fusion protein was expressed as an inclusion body in recombinant E. coli, yet when the conventional solution-phase refolding process was used the refolding yield was very low due to severe aggregation, probably because of the opposite surface charge resulting from the vastly different pl values of each domain. Accordingly the solid-phase refolding process, which exploits the ionic interactions between a solid matrix and the protein, was tried, however the ionic binding yield was also very low regardless of the resins and pH conditions used. Therefore, to provide a higher affinity toward the solid matrix, six Iysine residues were tagged to the N-terminus of the hEGF domain. When cation exchange resins, such as heparin- or CM-Sepharose, were used as the matrix, the adsorption capacity increased 2.5~3-fold and the subsequent refolding yield increased nearly 15-fold compared to the conventional process. A similat result was also obtained when an Ni-NTA metal affinity resin was used.

Bioaccumulation of Heavy Metals in Intestine of Nacella concinna (남극삿갓조개 (Nacella concinna) 장의 중금속 축적에 관한 연구)

  • Lee, Yong-Seok;Jo, Yong-Hun;Han, Yeon-Soo;Kho, Weon-Gyu;Ahn, In-Young;Jeong, Kye-Heon
    • The Korean Journal of Malacology
    • /
    • v.22 no.1 s.35
    • /
    • pp.87-95
    • /
    • 2006
  • Immunohistochemical and ultrastuructural experiments were conducted to find out heavy metal accumulation in the intestine of an Antarctic gastropod Nacella concinna. According to the immune-histochemical experiment the apical cytoplasm of the intestinal epithelium showed positive reactions to anti-MT (rnotallothionein), indicating the presence of MT, a metal-binding protein involved in metal detoxifying process. In the transmission electron microscopic observations, the epithelial cells of the intestine exposed to Cd for over three hours showed irregular nuclear membranes, secretory granules, and probable metal granules. According to the SEM-EDS experiments on the intestine, concentration of Pb in the apical epithelium was in inverse proportion to that in the intestinal lumen. After exposing to Cd for over three days, S was rapidly reduced. Ca and Zn were rapidly increased after exposure to Cd. These elements are supposed to be concerned with the MT-reaction in the intestine. laken together, these data suggest that N. concinna could be used as a potential biomarker species.

  • PDF

Characteristics of Growth and Metal Removal in Recombinant Saccharomyces cerevisiae harboring a Metallothionein Gene (Metallothionein 유전자가 도입된 재조합 Saccharomyces cerevisiae의 생육과 금속제거에 대한 특성)

  • 정동환;김대옥서진호
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.475-481
    • /
    • 1995
  • The effect of metallothionein expression on the metal resistance and removal by recombinant Saccharomyces cerevisiae containing the plasmid pJW9 was investigated. The recombinant strain S. cerevisiae BZ-pJ was constructed by transforming the host strain S. cerevisiae BZ3l-1-7Ba with the gene coding for a metal-binding protein, metallothionein. Introduction of the MT gene yielded an increase in the minimum inhibitory concentration (MIC) of copper more than three times compared with the host strain. The minimum inhibitory concentrations of $Cr^{2+}, Znr^{2+} and Pb^{2+}, $ were not different for the two strains. The recombinant yeast grown in a medium containing 8mM CuSO4 was able to remove copper with a capacity of 18.9mg $Cu^{2+}$/g dry cell. In a mixture of copper and zinc, the presence of copper relieved the toxic effects caused by zinc, resulting in an enhancement of the final cell density and the specific growth rate of the recombinant yeast. The capability to remove copper by the recombinant yeast was linearly proportional to the copper concentrations in the medium. The efficiency of copper removal was rather constant regardless of the initial copper concentrations. The specific removal of zinc was dependent on the zinc concentrations in media, though, and such dependence was not so pronounced as the concentration of copper.

  • PDF

Genome-Wide Analysis of Hypoxia-Responsive Genes in the Rice Blast Fungus

  • Choi, Jaehyuk;Chung, Hyunjung;Lee, Gir-Won;Koh, Sun-Ki;Chae, Suhn-Kee;Lee, Yong-Hwan
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.13-13
    • /
    • 2015
  • Rice blast fungus, Magnaporthe oryzae, is the most destructive pathogen of rice in the world. This fungus has a biotrophic phase early in infection and switches to a necrotrophic lifestyle after host cell death. During the biotrophic phase, the fungus competes with host for nutrients and oxygen. Continuous uptake of oxygen is essential for successful establishment of blast disease of this pathogen. Here, we report transcriptional responses of the fungus to oxygen limitation. Transcriptome analysis using RNA-Seq identified 1,047 up-regulated genes in response to hypoxia. Those genes were involved in mycelial development, sterol biosynthesis, and metal ion transport based on hierarchical GO terms and well-conserved among three different fungal species. In addition, null mutants of three hypoxia-responsive genes were generated and tested for their roles on fungal development and pathogenicity. The mutants for a sterol regulatory element-binding protein gene, MoSRE1, and C4 methyl sterol oxidase gene, ERG25, exhibited increased sensitivity to hypoxia-mimetic agent, increased conidiation, and delayed invasive growth within host cells, suggesting important roles in fungal development. However, such defects did not cause any significant decrease in disease severity. The other null mutant for alcohol dehydrogenase gene, MoADH1, showed no defect in the hypoxia-mimic condition and fungal development. Taken together, this comprehensive transcriptional profiling in response to a hypoxia condition with experimental validations would provide new insights on fungal development and pathogenicity in plant pathogenic fungi.

  • PDF

Analysis of Rice Blast Infection and Resistance-inducing Mechanisms via Effectors Secreted from Magnaporthe oryzae

  • Saitoh, Hiromasa;H, Kanzaki;K, Fujisaki;R, Terauchi
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.61-61
    • /
    • 2015
  • Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most destructive diseases of rice worldwide. The rice - M. oryzae pathosystem has become a model in the study of plant - fungal interactions due to its economic importance and accumulating knowledge. During the evolutionary arms race with M. oryzae, rice plants evolved a repertoire of Resistance (R) genes to protect themselves from diseases in a gene-for-gene fashion. M. oryzae secretes a battery of small effector proteins to manipulate host functions for its successful infection, and some of them are recognized by host R proteins as avirulence effectors (AVR), which turns on strong immunity. Therefore, the analysis of interactions between AVRs and their cognate R proteins provide crucial insights into the molecular basis of plant - fungal interactions. Rice blast resistance genes Pik, Pia, Pii comprise pairs of protein-coding ORFs, Pik-1 and Pik-2, RGA4 and RGA5, Pii-1 and Pii-2, respectively. In all three cases, the paired genes are tightly linked and oriented to the opposite directions. In the AVR-Pik/Pik interaction, it has been unraveled that AVR-Pik binds to the N-terminal coiled-coil domain of Pik-1. RGA4 and RGA5 are necessary and sufficient to mediate Pia resistance and recognize the M. oryzae effectors AVR-Pia and AVR1-CO39. A domain at the C-terminus of RGA5 characterized by a heavy metal associated domain was identified as the AVR-binding domain of RGA5. Similarly, physical interactions among Pii-1, Pii-2 and AVR-Pii are being analyzed.

  • PDF

Chemical Modification of 5-Lipoxygenase from the Korean Red Potato

  • Kim, Kyoung-Ja
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.172-178
    • /
    • 2000
  • The lipoxygenase was purified 35 fold to homogeneity from the Korean red potato by an ammonium sulfate precipitation and DEAE-cellulose column chromatography. The simple purification method is useful for the preparation of pure lipoxygenase. The molecular weight of the enzyme was estimated to be 38,000 by SDS-polyacrylamide gel electrophoreses and Sepharose 6B column chromatography. The purified enzyme with 2 M $(NH_4)_2SO_4$ in a potassium phosphate buffer, pH 7.0, was very stable for 5 months at $-20^{\circ}C$. Because the purified lipoxygenase is very stable, it could be useful for the screening of a lipoxygenase inhibitor. The optimal pH and temperature for lipoxygenase purified from the red potato were found to be pH 9.0. and $30^{\circ}C$, respectively. The Km and Vmax values for linoleic acid of the lipoxygenase purified from the red potato were $48\;{\mu}M$ and $0.03\;{\mu}M$ per minute per milligram of protein, respectively. The enzyme was insensitive to the metal chelating agents tested (2 mM KCN, 1 and 10mM EDTA, and 1 mM $NaN_3$), but was inhibited by several divalent cations, such as $Cu^{++}$, $Co^{++}$ and $Ni^{++}$. The essential amino acids that were involved in the catalytic mechanism of the 5-lipoxygenase from the Korean red potato were determined by chemical modification studies. The catalytic activity of lipoxygenase from the red potato was seriously reduced after treatment with a diethylpyrocarbonate (DEPC) modifying histidine residue and Woodward's reagent (WRK) modifying aspartic/glutamic acid. The inactivation reaction of DEPC (WRK) processed in the form of pseudo-first-order kinetics. The double-logarithmic plot of the observed pseudo-first-order rate constant against the modifier concentration yielded a reaction order 2, indicating that two histidine residues (carboxylic acids) were essential for the lipoxygenase activity from the red potato. The linoleic acid protected the enzyme against inactivation by DEPC(WRK), revealing that histidine and carboxylic amino acids residues were present at the substrate binding site of the enzyme molecules.

  • PDF

Identification of Genes that are Induced after Cadmium Exposure by Suppression Subtractive Hybridization

  • 이미옥
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.107-107
    • /
    • 2003
  • The heavy metal cadmium is a xenobiotic toxicant of environmental and occupational concern and it has been classified as a human carcinogen. Inhalation of cadmium has been implicated in the development of emphysema and pulmonary fibrosis, but, the detailed mechanism by which cadmium induces adverse biological effects is not yet known. Therefore, we undertook the investigation of genes that are induced after cadmium exposure to illustrate the mechanism of cadmium toxicity For this purpose, we employed the polymerase chain reaction-based suppression subtractive hybridization technique. We identified 29 different cadmium-inducible genes in human peripheral mononuclear cells, such as macrophage migration inhibitory factor, lysophosphatidic acid acyltransferase-${\alpha}$, enolase-1${\alpha}$, VEGF, Bax, neuron-derived orphan receptor-1, and Nur77, which are known to be associated with inflammation, cell survival, and apoptosis. Induction of these genes by cadmium treatment was further confirmed by semi-quantitative reverse-transcription polymerase chain reaction. Further, we found that these genes were also induced after cadmium exposure in normal human lung fibroblast cell line, WI-38, suggesting potential use of this induction profile to monitor cadmium toxicity in the lung. Next, Nur77, one of cadmium-inducible genes, was further studied since the products of Nur77 are known to be involved in the apoptotic process of lung cells. Following cadmium treatment, Nur77 gene expression was increased at protein-level in A549 cells. Consistently, the reporter containing Nur77 binding sequence was activated by 2.5-fold after exposure to cadmium in reporter gene analysis by transient transfection experiments. When the plasmid encoding dominant negative Nur77 that represses the transcriptional function of wild-type Nur77 was transfected into A549 cells, the expression of Bax was significantly reduced, suggesting that induction of Nur77 was an important process in cadmium-induced apoptosis in the cells. Cadmium induced the expression of Nur77 in vivo, confirming the relevance of the data obtained in viro. Together our results suggest that Nur77 gene expression in exposure to cadmium leads apoptosis of lung cells which may cause pathological changes in lung.

  • PDF

Adherence of Salivary Proteins to Various Orthodontic Brackets (다양한 교정용 브라켓 표면에 부착하는 타액단백질에 관한 연구)

  • Ahn, Sug-Joon;Ihm, Jong-An;Nahm, Dong-Seok
    • The korean journal of orthodontics
    • /
    • v.32 no.6 s.95
    • /
    • pp.443-453
    • /
    • 2002
  • The principal aims of this study were to identify the composition of salivary pellicles formed on various orthodontic brackets and to obtain a detailed information about the protein adsorption profiles from whole saliva and two major glandular salivas. Four different types of orthodontic brackets were used. All were upper bicuspid brackets with a $022{\times}028$ slot Roth prescription; stainless steel metal, monocrystalline sapphire, polycrystalline alumina, and plastic brackets. Bracket pelicles were formed by the incubation of orthodontic brackets with whole saliva, submandibular-sublingual saliva, and parotid saliva for 2 hours. The bracket pellicles were extracted and confirmed by employing sodium dodecyl sulfatepolyacrylamide gel electrophoresis, Western transfer methods, and immunodetection. The results showed that low-molecular weight salivary mucin, ${\alpha}-amylase$, secretory IgA (sIgA), acidic proline-rich proteins, and cystatins were attached to all of these brackets regardless of the bracket types. High-molecular weight mucin, which promotes the adhesion of Streptococcus mutans, did not adhere to uy orthodontic brackets. Though the same components were detected in all bracket pellicles, however, the gel profiles showed qualitatively and quantitatively different pellicles, according to the origins of saliva and the bracket types. In particular, the binding of sIgA was more prominent in the pellicles from parotid saliva and the binding of cystatins was prominent in the pellicles from the form plastic brackets. This study indicates that numerous salivary proteins adhere to the orthodontic brackets and these salivary proteins adhere selectively according to bracket types and the types of the saliva.