• Title/Summary/Keyword: Metal-Thermal reduction

Search Result 138, Processing Time 0.033 seconds

Study on the Excessive Current Noise in $RuO_2$ Thick Film Resistors (산화루테늄계 후막 저항기의 과도한 전류잡음에 관한 고찰)

  • 김지호;김진용;임한조;신철재;박홍이
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.3
    • /
    • pp.79-86
    • /
    • 1992
  • The cause of excess current noise which appears some times in RuO$_2$ thick film chip resistors and the process to reduce such noise are investigated. We observed that too large thermal expansion coefficients of resistor paste and electrode metal paste can induce the mechanical stress and microcracks in the contact region of the two sintered materials. Such microcracks result in the reduction of conduction paths in the sintered electrode and this provokes the increase of the resistance value and the current noise. Such excessive current noise induced by microcracks could be reduced or even eliminated by using an enlarged overcoat patterns in the plating process or by adding an additional annealing process before plating.

  • PDF

Fused Salt Electrolysis of Magnesium Chloride (염화마그네슘의 용융염전해 연구)

  • Lee, Hoo-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.546-547
    • /
    • 2007
  • Magnesium is widely used as a lightweight alloy for car engine components and case of cellular phone. Extraction technologies of magnesium are divided to fused salt electrolysis process and thermal reduction process. In this study, electrolysis magnesium is prepared by fused salt electrolysis process with magnesium chloride. We compared two kinds of mixed salt at 7V. As a result, 47% of current efficiency was obtained by electrolyzing KCl/NaCl/$MgCl_2$ mixed salt bath at $760^{\circ}C$, and purity of the prepared magnesium was over 98%. With this study, we can scale up fused salt electrolysis device and accumulate basic data which will be needed for designing an electrolysis cell.

  • PDF

Electrochemical Properties of Carbonized Phenol Resin (탄화된 페놀레진의 전기화학적 성질)

  • 김한주;박종은;홍지숙;류부형;박수길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.629-632
    • /
    • 1999
  • For replacing Li metal ai Lithium ton Bakery(LIB) system. we used carbon powder material which prepared by pyrolysis of phenol resin as starting material. It became amorphous carbon by pyrolysis through it\`s self condensation by thermal treatment. Amorphous carbon can be doped with Li intercalation and deintercalation because it has wide interlayer. however it has a problem with structural destroy causing weak carbon-carbon bond. So. we used ZnCl$_2$ as the pore-forming agent. This inorganic salt used together with the resin serves not only as the pore-forming agent to form open pores, which grow Into a three-dimensional network structure in the cured material, foul also as the microstructure-controlling agent to form a loose structure dope with bulky dopants. We analyzed SEM in order to find to different of structure. and can calculate distance of interlayer. CV test showed oxidation and reduction

  • PDF

Synthesis and Characterization of Large-Area and Highly Crystalline Molybdenum Disulphide Atomic Layer by Chemical Vapor Deposition

  • Park, Seung-Ho;Kim, Yooseok;Kim, Ji Sun;Lee, Su-Il;Cha, Myoung-Jun;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.356.1-356.1
    • /
    • 2014
  • The Isolation of few-layered transition metal dichalcogenides has mainly been performed by mechanical and chemical exfoliation with very low yields. in particular, the two-dimensional layer of molybdenum disulfide (MoS2) has recently attracted much interest due to its direct-gap property and potential application in optoelectronics and energy harvesting. However, the synthetic approach to obtain high-quality and large-area MoS2 atomic thin layers is still rare. In this account, a controlled thermal reduction-sulfurization method is used to synthesize large-MoOx thin films are first deposited on Si/SiO2 substrates, which are then sulfurized (under vacuum) at high temperatures. Samples with different thicknesses have been analyzed by Raman spectroscopy and TEM, and their photoluminescence properties have been evaluated. We demonstrated the presence of mono-, bi-, and few-layered MoS2 on as-grown samples. It is well known that the electronic structure of these materials is very sensitive to the number of layer, ranging from indirect band gap semiconductor in the bulk phase to direct band gap semiconductor in monolayers. This synthetic approach is simple, scalable, and applicable to other transition metal dichalcogenides. Meanwhile, the obtained MoS2 films are transferable to arbitrary substrates, providing great opportunities to make layered composites by stacking various atomically thin layers.

  • PDF

Preparation and Characterization of Graphene/Zn-Al Layered Double Hydroxide Composites (그래핀과 Zn-Al 이중층상 수산화물 복합체의 제조 및 특성분석)

  • Lee, Jong-Hee;Ko, Yl-Woong;Kim, Ki-Young;Lim, Jung-Hyurk;Kim, Kyung-Min
    • Journal of Adhesion and Interface
    • /
    • v.12 no.4
    • /
    • pp.133-137
    • /
    • 2011
  • Exfoliated graphite oxide (EGO) was prepared by graphite oxide in an aqueous solution of TMAOH. The hybrid graphene/Zn-Al LDH material was fabricated by the hydrothermal reduction of the solution of EGO, $Zn(NO_3)_2{\cdot}6H_2O$, $Al(NO_3)_3{\cdot}9H_2O$, urea, and trisodium citrate. That is, metal ions were absorbed on the surface of EGO, and Zn-Al LDH material was randomly dispersed on the surface of graphene along with a reduction process of EGO to graphene by hydrothermal treatment. The composition, morphology, and thermal property of the obtained graphene-based hybrid material were studied by FE-SEM, EDX, TEM, FT-IR, XRD, TGA, and DSC.

Synthesis of Highly Dispersed Pd Nanocatalysts Through Control of Organic Ligands and Their Electrochemical Properties for Oxygen Reduction Reaction in Anion Exchange Membrane Fuel Cells (유기 리간드 제어를 통한 고분산 팔라듐 나노 촉매의 합성 및 음이온교환막 연료전지를 위한 산소 환원 반응 특성 분석)

  • Sung, Hukwang;Sharma, Monika;Jang, Jeonghee;Jung, Namgee
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.633-639
    • /
    • 2018
  • In anion exchange membrane fuel cells, Pd nanoparticles are extensively studied as promising non-Pt catalysts due to their electronic structure similar to Pt. In this study, to fabricate Pd nanoparticles well dispersed on carbon support materials, we propose a synthetic strategy using mixed organic ligands with different chemical structures and functions. Simultaneously to control the Pd particle size and dispersion, a ligand mixture composed of oleylamine(OA) and trioctylphosphine(TOP) is utilized during thermal decomposition of Pd precursors. In the ligand mixture, OA serves mainly as a reducing agent rather than a stabilizer since TOP, which has a bulky structure, more strongly interacts with the Pd metal surface as a stabilizer compared to OA. The specific roles of OA and TOP in the Pd nanoparticle synthesis are studied according to the mixture composition, and the oxygen reduction reaction(ORR) activity and durability of highly-dispersed Pd nanocatalysts with different particles sizes are investigated. The results of this study confirm that the Pd nanocatalyst with large particles has high durability compared to the nanocatalyst with small Pd nanoparticles during the accelerated degradation tests although they initially indicated similar ORR performance.

Analysis on Improving Power of Thermal Radiation Shield in Low Pressure Chamber of AMTEC (AMTEC내 저압용기에서의 열복사차단막 형상에 따른 발전량 향상 해석)

  • Chung, Won-Sik;Chi, Ri-Guang;Lee, Wook-Hyun;Lee, Kye-Bock;Rhi, Seok-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.54-62
    • /
    • 2016
  • The most efficient system for converting heat to electricity, AMTEC (Alkali Metal Thermal-to-Electric Convertor), is a device that directly converts heat energy to electricity using an alkali metal (sodium) as the working fluid. The AMTEC consists of a low pressure chamber, high pressure chamber, BASE (Beta-Alumina Solid Electrolyte), and artery wick. The main heat loss of the AMTEC system occurs in the low pressure chamber. A high power generation rate is thought to be obtainable by using a high temperature in the BASE. Therefore, to reduce the radiation heat loss, 6 types of radiation shields were examined to reduce the radiative heat loss in the low pressure chamber. The power generation rate of the AMTEC varied depending on the shape of the radiation shield. CFD (Computational Fluid Dynamics) analyses were carried out to optimize the shape of the radiation shield. As a result, the optimum radiation shield was found to consist of a curvature formed at the vertical point, in which case the dimensionless temperature (condenser temperature/BASE temperature) is approximately 0.665 and the maximum power generated is calculated to be 17.69W. Increasing the distance beween the BASE and condenser leads to an increase in the power generated, and the power generated with the longest distance was 17.58 W. The shields with multiple holes and multiple horizontal layers showed power reduction rates of 0.91 W and 2.06 W, respectively.

Effect of CeO2 Addition on De-CH4 and NOx Performance (CH4와 NOx 저감 성능에 관한 CeO2 첨가의 영향)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.473-479
    • /
    • 2017
  • Due to environmental pollution, hazards of the human body, and global warning, changes in the power train of automobiles are intensifying, and the market forelectronic vehicles is rising. Also, in order to meet the stricter emission regulations forautomobiles with internal combustion engines based on fossil fuel, the proportion of after-treatments for vehicles and vessels is increasing gradually. The objective of this study is to investigate the effectsfrom additive ceric oxide ($CeO_2$) loading amounts to improve the methane ($CH_4$) and nitric oxide (NOx) abatement ability of the natural gas oxidation catalysts(NGOC) reducing toxic gases emitted from compressed natural gas (CNG) buses. Three kinds of NGOC were prepared under the following conditions: fresh and $700^{\circ}C$ for 12hr thermal aging, and the reduction performance of toxic gases was evaluated. Fresh $1Pt-3Pd-1Rh-3MgO-6CeO_2/(Al+Z)$ NGOC containing 6wt% $CeO_2$ had the highest dispersivity of palladium (Pd) with high selectivity to $CH_4$ and improved harmful gas reduction performance. The NGOC with 6wt% $CeO_2$ loaded the least decreased in the dispersivity of the noble metal, and showed the highest reduction of harmful gases due to the thermal durability of $CeO_2$.

Synthesis of High-quality Graphene by Inductively-coupled Plasma-enhanced Chemical Vapor Deposition

  • Lam, Van Nang;Kumar, Challa Kiran;Park, Nam-Kyu;Arepalli, Vinaya Kumar;Kim, Eui-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.16.2-16.2
    • /
    • 2011
  • Graphene has attracted significant attention due to its unique characteristics and promising nanoelectronic device applications. For practical device applications, it is essential to synthesize high-quality and large-area graphene films. Graphene has been synthesized by eloborated mechanical exfoliation of highly oriented pyrolytic graphite, chemical reduction of exfoliated grahene oxide, thermal decomposition of silicon carbide, and chemical vapor deposition (CVD) on metal substrates such as Ni, Cu, Ru etc. The CVD has advantages over some of other methods in terms of mass production on large-areas substrates and it can be easily separated from the metal substrate and transferred to other desired substrates. Especially, plasma-enhanced CVD (PECVD) can be very efficient to synthesize high-quality graphene. Little information is available on the synthesis of graphene by PECVD even though PECVD has been demonstrated to be successful in synthesizing various carbon nanostructures such as carbon nanotubes and nanosheets. In this study, we synthesized graphene on $Ni/SiO_2/Si$ and Cu plate substrates with CH4 diluted in $Ar/H_2$ (10%) by using an inductively-coupled PECVD (ICPCVD). High-quality graphene was synthesized at as low as $700^{\circ}C$ with 600 W of plasma power while graphene layer was not formed without plasma. The growth rate of graphene was so fast that graphene films fully covered on substrate surface just for few seconds $CH_4$ gas supply. The transferred graphene films on glass substrates has a transmittance at 550 nm is higher 94%, indicating 1~3 monolayers of graphene were formed. FETs based on the grapheme films transferred to $Si/SiO_2$ substrates revealed a p-type. We will further discuss the synthesis of graphene and doped graphene by ICPVCD and their characteristics.

  • PDF

Comparison of Two-Types Compositions of Mixed Salts in Fused Salt Electrolysis of Magnesium (마그네슘의 용융염전해시(熔融鹽電解時) 두 가지 염욕조성(鹽浴組成)의 비교실험)

  • Park, Hyung-Kyu;Park, Jin-Tae;Choi, Young-Yoon
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.32-36
    • /
    • 2006
  • Magnesium has been used as light and functional material, and its demand is increasing as a material for automobile engine and for mobile phone or notebook PC case. Fused salt electrolysis and thermal reduction are regarded as main methods for the extraction of magnesium, and choice for the method is firstly according to raw material. In this study, magnesium metal is obtained by an electrolysis of magnesium chloride. Two types of fused salt mixtures were used as electrolyte and electrolyzed at 7V with a graphite anode having the same depth, and their results were compared with each other. A mixed salt of $KCl/NaCl/MgCl_2$ was the more effective than $KCl/NaCl/CaCl_2/CaF_2/MgCl_2$ in current efficiency through the experiments at $760^{\circ}C$. Purity of the prepared magnesium metal was above 98%. Some basic data for scale-up of the magnesium electrolysis equipment, which would be necessary for a commercialization, could be obtained.