• Title/Summary/Keyword: Metal-Jet

Search Result 115, Processing Time 0.026 seconds

Influence of Abrasive Water-Jet on Workpiece Geometry (Abrasive Water-Jet이 가공물의 형상에 미치는 영향)

  • 장현석;하만경;류인일;곽재섭;이상진;이기백
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.585-590
    • /
    • 2002
  • Abrasive water-jet(AWJ) machining is a new cutting technology. The AWJ can cut various materials touch as metal, glass and stone. However, the AWJ machining makes troubles including kerf, rounding and side taper. In this study, we investigated the correlation between parameters of abrasive water-jet machining arid cutting characteristics. The machining parameter were the material thickness and the traverse speed. The experiment was conducted to cut the stainless steel(STS41) and the mild steel(SS41) specimens. The results of the experiment weirs presented as the relation between cutting conditions and trouble of a dimension error, a conner error, an uncut width and a kerf.

  • PDF

Cutting Characteristics of Workpiece Using Abrasive Water-Jet Machining (Abrasive Water-Jet 가공에서 공작물의 절단특성)

  • 장현석;하만경;곽재섭;박후명;이상진;이기백
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.984-987
    • /
    • 2002
  • Abrasive water-jet(AWJ) machining is a new cutting technology. The AWJ can cut various materials such as metal, glass and stone. However, the AWJ machining makes troubles including kerf, rounding and side taper. In this study, we investigated the correlation between parameters of abrasive water-jet machining and cutting characteristics. The machining parameters were the material thickness and the traverse speed. The experiment was conducted to cut the stainless steel(STS41) and the mild steel(SS41) specimens. The results of the experiment were presented as the relation between cutting conditions and troubles of a dimension error, a conner error, an uncut width and a kerf.

  • PDF

Effects of Traverse Speed on Dimensional Error in Abrasive Water-Jet (입자 워터 젯의 이송속도가 공작물의 치수정밀도에 미치는 영향)

  • 곽재섭;하만경
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.1-7
    • /
    • 2004
  • Abrasive water-jet(AWJ) machining can cut various materials such as metal, glass and plastics. However, the AWJ machining has some troubles including kerf, rounding and side taper. In this study, we experimently investigated the correlation between the traverse speed of the abrasive water-jet and the dimensional error of the workpiece according to the thickness and the types of the material. The specimen was the stainless steel and the mild steel and the predetermined contour cutting was conducted. A comer radius error, an uncut width and a kerf were measured and evaluated.

A Study on the Characteristics of an Oscillating Fluidic Atomizer

  • Kim, K.H.;Kiger, K.;Lee, W.
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.105-112
    • /
    • 2006
  • A unique feature of fluidic atomizers is that the nozzle geometry produces a thin capillary Jet which is forced to oscillate on a 2-dimensional plane through the use of a passive feedback mechanism. The objective of the current work is to characterize the influence of the stagnation pressure at the nozzle exit, jet oscillation and stretching on the breakup properties of the capillary ligament. To achieve this, shadow graph technique is used to measure size, shape, velocity and the number density of the droplets as a function of the position within the spray fan. The breakup length, defined as the radial distance from the breakup point, is analyzed as a function of the non-dimensional parameters. Finally, a kinematic model is developed to simulate the breakup of the oscillating jets at low stagnation pressures. Using the existing jet breakup theories, the model is used to predict the size and diameter distribution of the droplets after primary atomization.

  • PDF

Investigation of charge injection in organic thin film transistor using ink-jet printed silver electrodes

  • Kim, Dong-Jo;Jeong, Sun-Ho;Lee, Sul;Jang, Dae-Hwan;Moon, Joo-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.730-732
    • /
    • 2007
  • We fabricated a coplanar type organic thin-film transistors using ink-jet printed silver source/drain electrodes and ${\alpha},{\omega}-dihexylquaterthiophene$ (DH4T) which is an active layer. Use of ink-jet printed silver nanoparticle-based metal electrode assists the energetic mismatch with p-type organic semiconductor via modification of their interfacial properties to enable ohmic contact formation.

  • PDF

Effect of Orifice Length on Particle Distribution in Particle-laden Jet (입자 부상 제트에서 오리피스 길이가 입자 분포에 미치는 영향에 대한 연구)

  • Yoon, Jungsoo;Paik, Kyong-Yup;Khil, Taeock;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.9-15
    • /
    • 2012
  • As a propellant of a high speed underwater vehicle, the hydro-reactive solid metal particles using seawater as a oxidizer maximizes its specific impulse when the solid metal particles and the seawater are uniformly mixed in the combustion chamber. The purpose of this study is to investigate the effects of injector geometry on the particle distribution of similarity point of view. For the purpose of this similarity of the mean velocity and particle number density along the radial direction was measured by Particle Image Velocimetry(PIV).

Anomalous Enrichment of $Pb^+$Ions by Crossed Beam Scattering of a Pb($Zr_xTil_{1-x}O_3$) Plume and an $O_2$ Jet

  • Park, Seong Min;Mun, Ji Yun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.8
    • /
    • pp.801-804
    • /
    • 2000
  • A crossed beam scattering of a $Pb(ZrxTi1-x)O_3plume$ and an oxygen jetwas studied by using a time-of-flight quadrupole mass spectroscopy. Both simple collisions and reactive scatterings had significant effects on the transportand energetics of ions in the plume. Relative enrichment of metal and metal oxide ions was also changed with the oxygen pulse because of the differences in the mass and chemical properties of the ions. In particular, an anomalous increase ofPb+ ions was observed as the oxygen jet crossed the plume at high laserfluences, while the signal magnitudes of alI other ions were reduced. This originates from the fact that PbO+ ions dissociate easily to liberate Pb+ ions inthe plume since the bond energy of PbO+ is as low as 2.2 eV.

Development of analysis program for direct containment heating

  • Jiang, Herui;Shen, Geyu;Meng, Zhaoming;Li, Wenzhe;Yan, Ruihao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3130-3139
    • /
    • 2022
  • Direct containment heating (DCH) is one of the potential factors leading to early containment failure. DCH is closely related to safety analysis and containment performance evaluation of nuclear power plants. In this study, a DCH prediction program was developed to analyze the DCH loads of containment vessel. The phenomenological model of debris dispersal, metal oxidation reaction, debris-atmospheric heat transfer and hydrogen jet burn was established. Code assessment was performed by comparing with several separate effect tests and integral effect tests. The comparison between the predicted results and experimental data shows that the program can predict the key parameters such as peak pressure, temperature, and hydrogen production in containment well, and for most comparisons the relative errors can be maintained within 20%. Among them, the prediction uncertainty of hydrogen production is slightly larger. The analysis shows that the main sources of the error are the difference of time scale and the oxidation of cavity debris.

CFD Analysis on Flow Characteristics of Oil Film Coating Nozzle (유막 코팅 노즐의 유동특성에 관한 CFD해석)

  • Jung, Se-Hoon;Ahn, Seuig-Ill;Shin, Byeong-Rog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.5
    • /
    • pp.50-56
    • /
    • 2008
  • Metal cutting operations involve generation of heat due to friction between the tool and the pieces. This heat needs to be carried away otherwise it creates white spots. To reduce this abnormal heat cutting fluid is used. Cutting fluid also has an important role in the lubrication of the cutting edges of machine tools and the pieces they are shaping, and in sluicing away the resulting swarf. As a cutting fluid, water is a great conductor of heat but is not stable at high temperatures, so to improve stability an emulsion type mixed fluid with water and oil is often used. It is pumped over the cutting site of cutting machines as a state of atomized water droplet coated with oil by using jet. In this paper, to develop cutting fluid supplying nozzle to obtain ultra thin oil film for coating water droplet, a numerical analysis of three dimensional mixed fluid Jet through multi-stage nozzle was carried out by using a finite volume method. Jet flow characteristics such as nozzle exit velocity, development of mixing region, re-entrance and jet intensity were analyzed. Detailed mixing process of fluids such as air, water and oil in the nozzle were also investigated. It is easy to understand complex flow pattern in multi-stage nozzle. Important flow Information for advance design of cutting fluid supplying nozzle was drawn.