• 제목/요약/키워드: Metal uptake

검색결과 261건 처리시간 0.022초

Saccharomyces uvarum에 의한 중금속 생체흡착에 관한 연구 (Biosorption of Heavy Metals by Saccharomyces uvarum)

  • 안갑환;서근학
    • 한국환경과학회지
    • /
    • 제4권5호
    • /
    • pp.141-141
    • /
    • 1995
  • The waste biomass of Sacchromyces uvarum, used in fermentation industries to produce ethanol, were studied for their ability to absorb various heavy metal ions. Heavy metal ions studied in this research were Cd, Co, Cr, Cu, Ni and Pb. The order of the sorption capacity was Pb>Cu>Co=Cr=Cd>Ni. The living Sacchromyces uvarum exhibited higher metal-uptake capacity than the dead Sacchromyces uvarum. After we compare the uptake capacity of the Sacchromyces uvarum for individual metal ions with for a mixture of them, the following was observed: in the mixed heavy metal solution the uptake capacity was decreased than the one heavy metal solution. The selective uptake was observed when all . the heavy metal ions were dissolved in a mixed solution. The adsorption isotherm modelling was decribed with the Langmuir and Freundlich model. The results were in good agreement with the Langmuir model.

Saccharomyces uvarum에 의한 중금속 생체흡착에 관한 연구 (Biosorption of Heavy Metals by Saccharomyces uvarum)

  • 안갑환;서근학
    • 한국환경과학회지
    • /
    • 제4권5호
    • /
    • pp.527-534
    • /
    • 1995
  • The waste biomass of Sacchromyces uvarum, used in fermentation industries to produce ethanol, were studied for their ability to absorb various heavy metal ions. Heavy metal ions studied in this research were Cd, Co, Cr, Cu, Ni and Pb. The order of the sorption capacity was Pb>Cu>Co=Cr=Cd>Ni. The living Sacchromyces uvarum exhibited higher metal-uptake capacity than the dead Sacchromyces uvarum. After we compare the uptake capacity of the Sacchromyces uvarum for individual metal ions with for a mixture of them, the following was observed: in the mixed heavy metal solution the uptake capacity was decreased than the one heavy metal solution. The selective uptake was observed when all . the heavy metal ions were dissolved in a mixed solution. The adsorption isotherm modelling was decribed with the Langmuir and Freundlich model. The results were in good agreement with the Langmuir model.

  • PDF

식물정화공법에서 다양한 중금속의 식물체로의 흡수 및 축적 특성 비교: 식물체 종류, 중금속 종류, 토양 내 중금속 농도를 중심으로 (Characteristics of Heavy Metals Uptake by Plants: Based on Plant Species, Types of Heavy Metals, and Initial Metal Concentration in Soil)

  • 정슬기;김태성;문희선
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권3호
    • /
    • pp.61-68
    • /
    • 2010
  • Phytoextraction, one type of phytoremediation processes, has been widely used in the removal of heavy metals from polluted soil. This paper reviewed literature on metal uptake by plants and characterized the metal uptake by types of metals (Zn, Cu, Pb, Cd, and As), plant species, initial metal concentrations in soil and the distribution of metals in different parts of plants. The potential of metal accumulation and transport by plants was closely related to plants species, types of metals, and initial metal concentrations in soil. The plants belonging to Brassicaceae, Solanaceae, Poaceae, and Convolvulaceae families have shown the high potential capacity of Cd accumulation. The Gentianaceae, Euphorbiaceae, and Polygonaceae families have exhibited relatively high Pb uptake potential while the Pteridaceae and Cyperaceae families have shown relatively high Zn uptake potential. The Pteridaceae family could uptake a remarkably high amount of As compared with other plant families. The potential metal accumulation per plant biomass has increased with increasing initial metal concentration in soil up to a certain level and then decreased for Cd and Zn. For As, only Pteris vittata had a linear relationship between initial concentration in soil and potential of metal uptake. However, a meaningful relationship for Pb was not found in this study. Generally, the plants having high metal uptake potential for Cd or Pb mainly accumulated the metal in their roots. However, the Euphorbiaceae family has accumulated more than 80% of Pb in shoot. Zn has evenly accumulated in roots and stems except for the plants belonging to the Polygonaceae and Rosaceae families which accumulated Zn in their leaves. The Pteridaceae family has accumulated a higher amount of As in leaves than roots. The types of metals, plant species, and initial metal concentration in soil influence the metal uptake by plants. It is important to select site-specific plant species for effective removal of metals in soil. Therefore, this study may provide useful and beneficial information on metal accumulation by plants for the in situ phytoremediation.

세 종의 이매패류 Corbicula fluminea, Potamocorbula amurensis, Macoma balthica의 여수율과 금속 흡수율과의 관계에 대한 연구 (Relationship between Clearance Rates and Metal Uptake Rates of Corbicula fluminea, Potamocorbula amurensis and Macoma balthica: Influence of Water Temperature and Body Size)

  • 이정석;이병권
    • 한국패류학회지
    • /
    • 제21권1호
    • /
    • pp.41-46
    • /
    • 2005
  • A series of radiotracer studies were conducted to evaluate the influence of water temperature and/or body size on the clearance rates and uptake rates of Cd, Se and Zn in the Asiatic clam, Corbicula fluminea, Asian clam Potamocorbula amurensis and Balthic clam, Macoma balthica. Uptake rates of Cd, Se and Zn were estimated simultaneously with clearance rate of clams under 3 different water temperature conditions (5, 13 and $21^{\circ}C$). The weight specific clearance and metal uptake rates of P. amurensiswere increased with temperature, however, no consistent temperature effect was observed for the other clams. The variation of uptake rates of Cd, Se and Zn along with temperature or body size in each clam species was well associated with clearance rates. The inter-species as well as the intra-species difference of metal uptake rates could be well explained by the variation of clearance rates of clam individuals.

  • PDF

Bioaccumulation of copper and zinc by the giant kelp Macrocystis pyrifera

  • Evans, La Kenya;Edwards, Matthew S.
    • ALGAE
    • /
    • 제26권3호
    • /
    • pp.265-275
    • /
    • 2011
  • This study examined the bioaccumulation of the heavy metals copper (Cu) and zinc (Zn) by the giant kelp, Macrocystis pyrifera, by exposing meristematic kelp tissue to elevated metal concentrations in seawater within laboratory aquaria. Specifically, we carried out two different experiments. The first examined metal uptake under a single, ecologically-relevant elevation of each metal (30 ppb Cu and 100 ppb Zn), and the second examined the relationships between varying levels of the metals (i.e., 15, 39, 60, 120, 240, and 480 ppb Cu, and 50, 100, 200, 300, 500, and 600 ppb Zn). Both experiments were designed to contrast the uptake of the metals in isolation (i.e., when only one metal concentration was elevated) and in combination (i.e., when both metals' concentrations were elevated). Following three days of exposure to the elevated metal concentrations, we collected and analyzed the M. pyrifera tissues using inductively coupled plasma atomic emissions spectroscopy. Our results indicated that M. pyrifera bioaccumulated Cu in all treatments where Cu concentrations in the seawater were elevated, regardless of whether Zn concentrations were also elevated. Similarly, M. pyrifera bioaccumulated Zn in treatments where seawater Zn concentrations were elevated, but this occurred only when we increased Zn alone, and not when we simultaneously increased Cu concentrations. This suggests that elevated Cu concentrations inhibit Zn uptake, but not vice versa. Following this, our second experiment examined the relationships among varying seawater Cu and Zn concentrations and their bioaccumulation by M. pyrifera. Here, our results indicated that, as their concentrations in the seawater rise, Cu and Zn uptake by M. pyrifera tissue also rises. As with the first experiment, the presence of elevated Zn in the water did not appear to affect Cu uptake at any concentration examined. However, although it was not statistically significant, we observed that the presence of elevated Cu in seawater appeared to trend toward inhibiting Zn uptake, especially at higher levels of the metals. This study suggests that M. pyrifera may be useful as a bio-indicator species for monitoring heavy metal pollution in coastal environments.

개다시마를 이용한 Pb 및 Cu 흡착 (Biosorption of Pb and Cu by Kjellmaniella crassifolia)

  • 안갑환;서근학;오창섭
    • 한국환경과학회지
    • /
    • 제7권5호
    • /
    • pp.653-658
    • /
    • 1998
  • Marine algaes are capable of binding a large quantity of heavy metals. We have investigated the uptake capacity of Pb and Cu by using 22 species of marine algae. collected from Korean coast. Among a variety of different marine algae types for biosorbent potential. Kjellmaniella crassifolia showed the highest uptake capacity of Pb. Metal uptake of Pb and Cu by Kjellmaniella crassifolia increase as the initial concentration rises, as long as binding sites are remained. The metal uptake parameters for Pb and Cu had been determined according to Langmuir and Freundlich model. By increasing pH, Pb uptake was increased and Cu uptake was constant. The maximum uptake capacity of Pb and Cu by Kjellmaniella crassifolia was 437 mg/g and 129 mg/g, respectively.

  • PDF

개체 크기와 온도가 홍합(Mytilus californianus)의 금속 흡수율에 미치는 영향 (Influence of Body Size and Ambient Temperature on the Uptake Rate of Cd, Se, and Zn in the California Mussel, Mytilus californianus)

  • 이정석;이병권;이인태
    • 환경생물
    • /
    • 제22권3호
    • /
    • pp.438-445
    • /
    • 2004
  • 캘리포오니아 홍합(Mytilus californianus)의 용존 Cd, Se, Zn의 흡수율에 대한 개체 크기와 수온의 영향을 평가하기 위하여 방사성 동위원소를 이용한 실험을 수행하였다. 세 개의 크기 구배(0.07, 0.24 and 0.73g; 육질부 건중량)를 갖는 홍합의 용존 금속 흡수율과 여수율은 동시에 4개의 온도 구배(3, 8, 13 and $21^\circ{C})$에서 측정되었다. 세 원소의 흡수율은 개체 크기가 증가함에 따라 유의하게 감소한 반면, 수온이 증가함에 따라 유의한 증가를 보였다. 홍합의 여수율은 전반적으로 용존 금속의 흡수율과 뚜렷한 상관관계를 보였는데, 이는 여과식자인 홍합이 용존 금속을 흡수하는 과정에 있어서 해수 여과 능력의 기능적인 중요성을 보여주는 결과이다.

잘피의 광합성에 대한 중금속 및 TBT의 독성 영향과 중금속 흡수에 대한 연구 (Preliminary Study on the Toxicity and Transfer of Heavy Metals and Tributyltin to Seagrass Zostera marina)

  • 최태섭;김광용;이병권;이정석
    • ALGAE
    • /
    • 제20권2호
    • /
    • pp.157-166
    • /
    • 2005
  • Uptake kinetics of Cd and Zn by leaves and rhizome of the seagrass Zostera marina were examined in controlled laboratory radiotracer experiments. Subsequently, acute toxicity of Cd, Cu and TBT on photosynthetic quantum yield (ΔF/Fm’ of Z. marina were determined, and the differential sensitivities of rapid light curve (RLC) to those harmful substances were also compared. All measurements on photosynthetic activity were determined by chlorophyll a fluorescence method using pulse amplitude modulation (PAM). Metal uptake by Z. marina was saturated with increasing exposure time in leaves and rhizomes. Uptake of Zn by Z. marina was faster than that of Cd. Metal uptake rates in Z. marina decreased with the increase of dissolved metal concentrations and also with the increase of biomass. The adverse effect of TBT on effective quantum yield was stronger than other pollutants. Average acute toxicity on the RLC of the seagrass exposed to TBT and two heavy metals (Cd and Cu) was going to decrease as follows: TBT > Cd > Cu. Our preliminary results in this study suggested that Z. marina potentially can be used as a biomonitor of harmful substances contamination in coastal waters.

pH Effect on Lead Transport into astrocytes by Divalent Metal Transporter 1 (DMT1/Nramp2)

  • Cheong, Jae-Hoon;Desmond I. Bannon;Josep P. Bressler
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2001년도 추계학술대회 및 정기총회
    • /
    • pp.91-91
    • /
    • 2001
  • Nramp2, also known as DMT1 and DCT1, is a 12-transmembrane domain protein responsible for dietary iron uptake as well as metal ions such as lead, manganese, zinc, copper, nickel, cadmium, and cobalt. High expression of DMT1 increase lead uptake, and DMT1-dependent lead transport was H -dependent and inhibited by iron ions. The molecular mechanism of lead transport in CNS is as yet unknown. although interactions between iron and lead at the level of absorption have been known for some time. The process of lead uptake into astrocytes was not known yet. Nramp2 may mediate transport of heavy metal into astrocytes. We investigated whether Nramp2 mediate transport of lead into astrocytes. And we do whether Nramp2 was expressed highly by deprivation of iron in Astrocytes, and lead uptake into astrocytes was influenced by expression of Nramp2. Immortalized human fetal astrocyte(SV-FHA) cells were cultured in medium containing Dulbecco's modified Eagle's medium and treated with Deferoxamine. Northern blot analysis was done for determining mRNA level of DMT1 and lead uptake assay was done in incubation condition of pH 5.5 and 7.4.

  • PDF

Agricultural Methods for Toxicity Alleviation in Metal Contaminated Soils: A Review

  • Arunakumara, Kkiu;Walpola, Buddhi Charana;Yoon, Min-Ho
    • 한국토양비료학회지
    • /
    • 제46권2호
    • /
    • pp.73-80
    • /
    • 2013
  • Due to the fact that possible risk associated with soil-crop-food chain transfer, metal contamination in croplands has become a major topic of wide concern. Accumulation of toxic metals in edible parts of crops grown in contaminated soils has been reported from number of crops including rice, soybean, wheat, maize, and vegetables. Therefore, in order to ensure food safety, measures are needed to be taken in mitigating metal pollution and subsequent uptake by crop plants. Present paper critically reviewed some of the cost effective remediation techniques used in minimizing metal uptake by crops grown in contaminated soils. Liming with different materials such as limestone ($CaCO_3$), burnt lime (CaO), slaked lime [$Ca(OH)_2$], dolomite [$CaMg(CO_3)_2$], and slag ($CaSiO_3$) has been widely used because they could elevate soil pH rendering metals less-bioavailable for plant uptake. Zn fertilization, use of organic amendments, crop rotation and water management are among the other techniques successfully employed in reducing metal uptake by crop plants. However, irrespectively the mitigating measure used, heterogeneous accumulation of metals in different crop species is often reported. The inconsistency might be attributed to the genetic makeup of the crops for selective uptake, their morphological characteristics, position of edible parts on the plants in respect of their distance from roots, crop management practices, the season and to the soil characteristics. However, a sound conclusion in this regard can only be made when more scientific evidence is available on case-specific researches, in particular from long-term field trials which included risks and benefits analysis also for various remediation practices.