Influence of Body Size and Ambient Temperature on the Uptake Rate of Cd, Se, and Zn in the California Mussel, Mytilus californianus

개체 크기와 온도가 홍합(Mytilus californianus)의 금속 흡수율에 미치는 영향

  • 이정석 ((주)네오엔비즈 부설 환경안전연구소) ;
  • 이병권 (전남대학교 해양학과) ;
  • 이인태 (전남대학교 해양학과)
  • Published : 2004.09.01

Abstract

A radiotracer study was conducted to evaluate the influence of body size and temperature on the uptake rates of Cd, Se and Zn in the California mussel, Mytilus californianus. Uptake rates of Cd, Se and Zn were determined simultaneously with clearance of the mussels with 3 different size classes (0.07, 0.24 and 0.73 g flesh dry weight $individual^{-1})$ and at 4 different temperatures (3, 8, 13 and $21^\circ{C})$. The weight-specific uptake rates of 3 elements significantly decreased with body size, but increased with temperature. Simultaneously measured clearance rates of mussels were closely associated with metal uptake rates. The significant association of clearance rates and metal uptake rates of mussels emphasizes the importance of functional role of water pumping activity in the metal uptake process in filter-feeding organisms.

캘리포오니아 홍합(Mytilus californianus)의 용존 Cd, Se, Zn의 흡수율에 대한 개체 크기와 수온의 영향을 평가하기 위하여 방사성 동위원소를 이용한 실험을 수행하였다. 세 개의 크기 구배(0.07, 0.24 and 0.73g; 육질부 건중량)를 갖는 홍합의 용존 금속 흡수율과 여수율은 동시에 4개의 온도 구배(3, 8, 13 and $21^\circ{C})$에서 측정되었다. 세 원소의 흡수율은 개체 크기가 증가함에 따라 유의하게 감소한 반면, 수온이 증가함에 따라 유의한 증가를 보였다. 홍합의 여수율은 전반적으로 용존 금속의 흡수율과 뚜렷한 상관관계를 보였는데, 이는 여과식자인 홍합이 용존 금속을 흡수하는 과정에 있어서 해수 여과 능력의 기능적인 중요성을 보여주는 결과이다.

Keywords

References

  1. Boyden CR. 1977. Effect of size upon metal content of shellfish. J. Mar. Biol. Ass. UK. 57:675-714 https://doi.org/10.1017/S002531540002511X
  2. Campbell PGC. 1995. Interaction between trace metals and aquatic organisms: A critique of the free-ion acti-vity model, In: Metal Speciation and Bioavailability in Aquatic Systems (Tessier, A., Turner, D.R., eds.), pp. 45-102. John Wiley and Sons Ltd, New York
  3. Croteau M-N, L Hare and A Tessier. 2002. Influence of temperature on Cd accumulation by species of the bio-monitor Chaoborus. Limnol. Oceanogr. 47:505-514 https://doi.org/10.4319/lo.2002.47.2.0505
  4. Gerritsen J and DE Irvine. 1994. Suspension-feeding bivalves and fhe fate of primary production: an estu-arine model applied to Chesapeake Bay. Estuaries 1:403-416
  5. Gilek M, M Bjoerk and C Naef. 1996. influence of body size on the uptake, depuration, and bioaccumulation of polychlorinated biphenyl congeners by Baltic sea blue mussels, MytiIus edutis. Mar. Biol. 125:499-510
  6. Jackim E, G Morrison and R Steele. 1977. Effects of envi-ronmental factors on radiocadmium uptake by four species of marine bivalves. Mar. Biol. 40:303-308 https://doi.org/10.1007/BF00395722
  7. Johns HD, OG Richards and TA Southern. 1992. Gill dimensions, water pumping rate and body size in the mussel MytiIus edutis L. J. Exp. Mar. Biol. Ecol. 155:213-237 https://doi.org/10.1016/0022-0981(92)90064-H
  8. J$\phi$ rgensen CB. 1990. Bivalve filter feeding: hydrodynamics, bioenergetics, Physiology and ecology, pp. 140.Olsen & Olsen, Fredensborg, Denmark
  9. Lee JS. 2002. A Study on the Natural Variation of Tissue Metal Concentrations in Razor Clam, Sinonouacula constricta (Lamarck) from Mudflat in the Namyang Bay, PP. 171 Ph. D Thesis, Seoul National University
  10. Lee BG, WG Wallace and SN Luoma. 1998. Uptake and loss kinetics of Cd, Cr and Zn in the bivalves Potamo-corbuta amurensis and Macoma batthica: effects of size and salinity. Mar. Ecol. Prog. Ser. 175:177-189 https://doi.org/10.3354/meps175177
  11. Meyhofer E. 1985. Comparative pumping rates in suspension-feedmg bivalves. Mar. Biol. 85:137-142 https://doi.org/10.1007/BF00397432
  12. Mishima J and EP Odum. 1963. Excretion rate of Zn65 by Littorina irrorata in relation to temperature and body size. Limnol. Oceanogr. 8:39-44 https://doi.org/10.4319/lo.1963.8.1.0039
  13. Phillips DJH. 1980. Quantitative aquatic biological indi-cators: their use to monitor trace metal and organo-chlorine pollution. pp.488. Applied Science Publishers Ltd., London
  14. Podolsky RD. 1994. Temperature and water viscosity: physiological versus mechanical effects on suspension feeding. Science 265:100-103 https://doi.org/10.1126/science.265.5168.100
  15. Riisgard HU. 2001. On measurement of Gltration rates in bivalves-the stony road to reliable data: review and interpretation. Mar. Ecol. Prog. Ser. 211:275-291 https://doi.org/10.3354/meps211275
  16. Robinson WR, RH Peters and J Zimmermann. 1983. The effects of body size and temperature on metabolic rate of organisms. Can. J. Zool. 61:281-288 https://doi.org/10.1139/z83-037
  17. Strong CR and SN Luoma. 1981. Variation in the correla-tion of body size with concentrations of Cu and Ag in the bivalve Macoma baIthica. Can. J. Fish. Aqu. Sci. 38:1059-1064 https://doi.org/10.1139/f81-146
  18. Tran D, A Boudou and J-C Massabuau. 2001. How water oxygenation level influences cadmium accumulation pattern in the Asiatic clam Corbicuta fIuminea: a labo-ratory and field study. Environ. Toxicol. Chem. 20:2073-2080 https://doi.org/10.1897/1551-5028(2001)020<2073:HWOLIC>2.0.CO;2
  19. Tran D, A Boudou and J-C Massabuau. 2002. Relationship between feeding-induced ventilatory activity and bioaccumulation of dissolved and algal-bound cadmi-um in the Asiatic clam CorbicuIa fIuminea. Environ. Toxicol. Chem. 21:327-333 https://doi.org/10.1897/1551-5028(2002)021<0327:RBFIVA>2.0.CO;2
  20. Wang WX, NS Fisher and SN Luoma. 1996. Kinetic deter-mination of trace element bioaccumulation in the mussel MytiIus eduIis. Mar. Ecol. Prog. Ser. 140:91-113 https://doi.org/10.3354/meps140091
  21. Wang WX and NS Fisher. 1997. Modeling the influence of body size on trace element accumulation in the mussel MytiIus eduIis. Mar. Ecol. Prog. Ser. 161:103-115 https://doi.org/10.3354/meps161103
  22. Wang WX. 2001. Comparison of metal 'uptake rate and absorption efficiency in marine bivalves. Environ. Toxicol. Chem. 20:1367-1373 https://doi.org/10.1897/1551-5028(2001)020<1367:COMURA>2.0.CO;2
  23. Widdows J. 1985. Physiological procedures, In: The Effects of Stress and Pollution on Marine Animals (Bayne B.L. Brown, D.A., Burns, K., Dixon, D.R. Ivaovici, A., Livin-gston, D.R., Lowe, D.M., Moore, M.N., Stebbing, A.R.D., and Widdows, J. eds.). pp.161-179. Praeger, New York
  24. Widdows J and P Donkin. 1992. Mussels and environmen-tal contaminants: bioaccumulation and physiological aspects, In: The Mussel Mytitus: Ecology, Physiology, Genetics and Culture (Gosling, E. ed.). pp. 383-424. Els-evier, Amsterdam, The Netherlands