• 제목/요약/키워드: Metal temperature

검색결과 4,849건 처리시간 0.029초

분자 동역학 계산을 통한 결정질 실리콘 태양전지 기판에 콜드 스프레이 전극 형성 시 발생되는 비정질 구리상에 대한 용융 온도 변화 연구 (Melting Point of Amorphous Copper Phase on Crystalline Silicon Solar Cells During Cold Spray using Molecular Dynamics Calculations)

  • 김수민;강병준;정수정;강윤묵;이해석;김동환
    • Current Photovoltaic Research
    • /
    • 제3권2호
    • /
    • pp.61-64
    • /
    • 2015
  • In solar industry, numerous researchers reported about cold spray method among various electrode formation technic, but there are no known a bonding mechanism of metal powder. In this study, a cross-section of copper electrode formed by cold spray method was observed and heterogeneous phase between silicon substrate and copper electrode was analyzed using morphology observation technic. SEM and TEM analysis were performed to analyze a crystallinity and distribution shape of heterogeneous copper phase. Molecular dynamics simulation was performed to calculate glass transition temperature of copper metal. In the result, amorphous copper phase was observed near interface between silicon substrate and metal electrode. The results of the molecular dynamics simulation show that an amorphous copper phase could be formed at a temperature below the melting point of copper because cold spraying resulted in a lower glass transition temperature.

인공신경망을 사용한 섬유금속적층판의 온도에 따른 유동응력에 대한 수치해석적 예측 (Numerical Prediction of Temperature-Dependent Flow Stress on Fiber Metal Laminate using Artificial Neural Network)

  • 박으뜸;이영헌;김정;강범수;송우진
    • 소성∙가공
    • /
    • 제27권4호
    • /
    • pp.227-235
    • /
    • 2018
  • The flow stresses have been identified prior to a numerical simulation for predicting a deformation of materials using the experimental or analytical analysis. Recently, the flow stress models considering the temperature effect have been developed to reduce the number of experiments. Artificial neural network can provide a simple procedure for solving a problem from the analytical models. The objective of this paper is the prediction of flow stress on the fiber metal laminate using the artificial neural network. First, the training data were obtained by conducting the uniaxial tensile tests at the various temperature conditions. After, the artificial neural network has been trained by Levenberg-Marquardt method. The numerical results of the trained model were compared with the analytical models predicted at the previous study. It is noted that the artificial neural network can predict flow stress effectively as compared with the previously-proposed analytical models.

Metal Hydride Chemical Heat Pump의 최적 작동조건에 관한 연구 (Optimum Operating Conditions of Metal Hydride Chemical Heat Pump)

  • 권기원;이재영
    • 한국수소및신에너지학회논문집
    • /
    • 제1권1호
    • /
    • pp.24-30
    • /
    • 1989
  • Prototype metal hydride chemical heat pump was constructed using $LaNi_{4.7}Al_{0.3}$ for high temperature hydride and $MmNi_{4.15}Fe_{0.65}Al_{0.2}$ for low temperature hydride, and the effects of operating conditions on the performace of heat pump were investigaed to find out the optimum operating condition. Operating variables considered in this work were cycling time, temperature of hot air blown to the high temperature reactor, the amount of hydrogen gas with which the system was charged initially, and the flow rate of air at both reactors. Power of heat pump increases monotonically as $T_h$ increases, and shows maxima at 4.8H/M and 15-25 min in $H_2$ charged and cycling time respectively. Power of heat pump increases as air flow rate increases at low flow rate, but saturates to some value confined by heat flow rate through the hydride bed, These all phenomena can be explained by the modified power equation.

  • PDF

Ag-Cu/$Al_2O_3$ 복합촉매를 이용한 저온에서의 $NH_3$ 산화 ($NH_3$ oxidation using Ag-Cu/$Al_2O_3$ composite catalyst at low temperature)

  • 임윤희;이주열;박병현
    • 한국응용과학기술학회지
    • /
    • 제31권2호
    • /
    • pp.313-319
    • /
    • 2014
  • This study was performed to obtain high conversion efficiency of $NH_3$ and minimize generation of nitrogen oxides using metal-supported catalyst with Ag : Cu ratio. Through structural analysis of the prepared catalyst with Ag : Cu ratio ((10-x)Ag-xCu ($0{\leq}x{\leq}6$)), it was confirmed that the specific surface area was decrease with increasing metal content. A prepared catalysts showed Type II adsorption isotherms regardless of the ratio Ag : Cu of metal content, and crystalline phase of $Ag_2O$, CuO and $CuAl_2O$ was observed by XRD analysis. In the low temperature($150{\sim}200^{\circ}C$), a conversion efficiency of AC_10 recorded the highest(98%), whereas AC_5 (Ag : Cu = 5 : 5) also showed good conversion efficiency(93.8%). However, in the high temperature range, the amounts of by-products(NO, $NO_2$) formed with AC_5 was lower than that of AC_10. From these results, It is concluded that AC_5 is more environmentally and economically suitable.

초음파 조사에 의한 토양내 중금속 추출 기작 연구 (Mechanism on Extraction of Heavy Metals from Soil by Ultrasonication)

  • 신연준;이차돌;유종찬;양중석;김호섭;백기태
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권1호
    • /
    • pp.28-35
    • /
    • 2015
  • In this study, the mechanisms on ultrasonication enhanced metals extraction were investigated compared with the conventional washing technique. We hypothesized the mechanisms on enhanced extraction of ultrasonication: ultrasonication increased the temperature of soil slurry and decreased average particle size of soil due to breakdown of soil aggregate. Actually, the ultrasonication increased the temperature of soil slurry to $60^{\circ}C$ in this study, and the increase in the temperature enhanced the metal extraction to 15-20% even in the conventional simple mixing. The conventional washing technique decreased average size of soil particles because of breakdown of soil aggregate, and the ultrasonication decreased the size more than that of washing. The breakdown of soil aggregate improved the contact between metals and washing agent, which enhanced the extraction of metals in the ultrasonication. Therefore, we concluded that the main mechanisms of ultrasonication are increase in the temperature and breakdown of the soil aggregate. Finally, the ultrasonicaiton increased the extractability of metals upto 40% compared to conventional washing technique.

내부에 히트파이프를 삽입한 메탈 하이드라이드 반응기의 열전달 특성에 대한 수치해석 연구 (A Numerical Study on the Heat Transfer Characteristics of a Metal Hydride Reactor with Embedded Heat Pipes)

  • 박영학;부준홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2346-2351
    • /
    • 2008
  • This study deals with heat pipes inserted into the metal hydride(MH) reactor to increase the effective thermal conductivity of the system and thus to enhance the thermal control characteristics. A numerical analysis was conducted to predict the effect of inserted heat pipes on the heat transfer characteristics of MH, which inherently has extremely low thermal conductivity. The numerical model was a cylindrical container of O.D. 76.3 mm and length 1 m, which is partially filled with about 60% of MH material. The heat pipe was made of copper-water combination, which is suitable for operation temperature range between $10^{\circ}C$ and $80^{\circ}C$. Both inner -and outer- heat pipes were considered in the model. Less than two hours of transient time is of concern when decreasing or increasing the temperature for absorption and discharge of hydrogen gas. FLUENT, a commercial software, was employed to predict the transient as well as steady-state temperature distribution of the MH reactor system. The numerical results were compared and analyzed from the view point of temperature uniformity and transient time up to the specified maximum or minimum temperatures.

  • PDF

삼중수소 저장을 위한 ZrCo 저장재에서의 수소 흡장에 대한 수치해석적 연구 (I) (A Numerical Investigation of Hydrogen Absorption Reaction Based on ZrCo for Tritium Storage (I))

  • 유하늘;윤세훈;장민호;강현구;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제23권5호
    • /
    • pp.448-454
    • /
    • 2012
  • In this paper, a three-dimensional hydrogen absorption model is applied to a thin double-layered annulus ZrCo hydride bed and validated against the temperature evolution data measured by Kang et al. The present model reasonably captures the bed temperature evolution behavior and the 99% hydrogen charging time. The equilibrium pressure expression for hydrogen absorption on ZrCo is derived as a function of temperature and the H/M atomic ratio based on the pressure-composition isotherm data given by Konishi et al. In addition, this present model provides multi-dimensional contours such as temperature and H/M atomic ratio in the thin doublelayered annulus metal hydride region. This numerical study provides fundamental understanding during hydrogen absorption process and indicates that efficient design of the metal hydride bed is critical to achieve rapid hydrogen charging performance. The present three-dimensional hydrogen absorption model is a useful tool for the optimization of bed design and operating conditions.

CPV 냉각용 열분산기 모듈의 열성능에 관한 실험적 연구 (Experimental Investigation on the Thermal Performance of a Heat Spreader Module for the CPV Cooling)

  • 도규형;한용식;최병일;김명배
    • 한국태양에너지학회 논문집
    • /
    • 제31권4호
    • /
    • pp.95-102
    • /
    • 2011
  • In this paper, the thermal performance of a heat spreader module for CPV(Concentrating Photovoltaic) cooling is experimentally investigated. In order to evaluate the thermal performance of the heat spreader module which consists of a Metal PCB and an aluminum alloy heat spreader, experiments are conducted with varying the type of the metal PCB, the thickness of the heat spreader, the inclination angle, and the applied heat flux. To validate the experimental data, three dimensional numerical simulations are performed using the commercial simulation tool in the present work. The experimental results are compared with the corresponding numerical results and are in close agreement with the numerical results. From the experimental results, the temperature difference between the maximum temperature and the ambient temperature increases with decreasing the thickness of the heat spreader and with increasing the applied heat flux. Also, it is found that the inclination angle significantly affects the thermal performance of the heat spreader. the maximum temperature difference of the heat spreader with the horizontal orientation is much larger than that with the vertical orientation.

금속분말 사출성형된 순-구리의 미세조직에 미치는 고온 소결조건의 영향 (Effect of High-Temperature Sintering Condition on Microstructure Evolution of Pure-Cu Subjected to Metal Injection Molding)

  • 한다인;수하르토노 트리;김동주;이은혜;김종하;고영건
    • 소성∙가공
    • /
    • 제31권4호
    • /
    • pp.240-245
    • /
    • 2022
  • In this study, to achieve good electrical conductivity of a charging terminal component in electric vehicles, we investigated the microstructure evolution of pure-Cu subjected to metal injection molding by controlling the sintering variables, such as temperature and time. Thus, three samples were sintered at temperatures ranging from 1000 ℃ to 1050 ℃ near to the melting temperature of 1085 ℃ for 1 and 10 h after thermal evaporation of binder at 730 ℃. Both procedures were made using a unified furnace under Ar+H2 gas with high purity. The structural observation displayed that the grain size as well as the compactness (a reciprocal of porosity) increased simultaneously as temperature and time increased. This gave rise to high thermal conductivity of 90% IACS together with high density, which was mainly attributed to decrease in fractions of grain boundaries and micro-pores working as effective scattering center for electron movement.

Exophiala sp.의 중금속 흡착에 미치는 온도 및 pH의 영향 (Effect of Temperature and pH on the Biosorption of Heavy Metals by Exophiala sp.)

  • 임정수;이소진;이은영
    • 한국미생물·생명공학회지
    • /
    • 제36권2호
    • /
    • pp.165-172
    • /
    • 2008
  • 본 연구에서는 분리균주 LH2를 이용하여 각각의 중금속 (Cr, Cu, Ni, Pb, Zn)에 대한 최적성장조건을 도출하였으며, pH, 온도 및 중금속 농도 변화에 따른 중금속 제거효율을 관찰하였다. 분리균주는 18S rDNA 분석에 의거하여 종 유사성이 100%로서 Exophiala sp.로 동정되었다. 분리균주의 경우 $25^{\circ}C$, pH 7인 진탕배양 조건에서 가장 높은 제거효율을 보였다. 첨가되는 중금속의 농도가 200 ppm이하일 경우 중 금속의 비제거속도를 구한 결과 pH 7인 조건에서 중금속의 종류와 무관하게 10 ppm에서 200 ppm으로 중금속의 농도가 증가함에 따라 0.01에서 4.43 mg-metal $L^{-1}{\cdot}d^{-1}{\cdot}mg^{-1}{\cdot}DCW^{-1}$으로 증가하였다. pH 7로 설정된 배양액에 약 200ppm의 중금속이 첨가될 경우 중금속의 제거효율은 Cr, Cu, Ni, Pb, 및 Zn 이 각각 99.28%, 97.67%, 91.94%, 99.77%, 99.61%로 관찰되었다.