• Title/Summary/Keyword: Metal temperature

Search Result 4,836, Processing Time 0.032 seconds

IoT-Based Device Utilization Technology for Big Data Collection in Foundry (주물공장의 빅데이터 수집을 위한 IoT 기반 디바이스 활용 기술)

  • Kim, Moon-Jo;Kim, DongEung
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.550-557
    • /
    • 2021
  • With the advent of the fourth industrial revolution, the interest in the internet of things (IoT) in manufacturing is growing, even at foundries. There are several types of process data that can be automatically collected at a foundry, but considerable amounts of process data are still managed based on handwriting for reasons such as the limited functions of outdated production facilities and process design based on operator know-how. In particular, despite recognizing the importance of converting process data into big data, many companies have difficulty adopting these steps willingly due to the burden of system construction costs. In this study, the field applicability of IoT-based devices was examined by manufacturing devices and applying them directly to the site of a centrifugal foundry. For the centrifugal casting process, the temperature and humidity of the working site, the molten metal temperature, and mold rotation speed were selected as process parameters to be collected. The sensors were selected in consideration of the detailed product specifications and cost required for each process parameter, and the circuit was configured using a NodeMCU board capable of wireless communication for IoT-based devices. After designing the circuit, PCB boards were prepared for each parameter, and each device was installed on site considering the working environment. After the on-site installation process, it was confirmed that the level of satisfaction with the safety of the workers and the efficiency of process management increased. Also, it is expected that it will be possible to link process data and quality data in the future, if process parameters are continuously collected. The IoT-based device designed in this study has adequate reliability at a low cast, meaning that the application of this technique can be considered as a cornerstone of data collecting at foundries.

Redispersion of Sintered PtSn Catalyst by Oxygen Treatment (소결된 백금주석 촉매의 산소 처리에 의한 재분산 연구)

  • Choi, Yi Sun;Kim, Tae hee;Koh, Hyoung Lim
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.459-467
    • /
    • 2022
  • Redispersion of Pt-Sn particles in Pt, PtSn catalyst which have been sintered by high temperature hydrogen reduction was investigated using oxygen treatment with various temperatures. The aim of this study was to understand the relationship between the catalytic activity for propane dehydrogenation reaction and the change in the physicochemical properties of the catalyst. X-ray diffraction analysis (XRD), CO pulse chemisorption, and H2 temperature programmed reduction (H2-TPR) were performed to investigate the state of active metal and interactions between particles of redispersed catalyst. It was confirmed that the dispersion and particle size of platinum, the crystal phase of the catalyst, and the reduction behavior were changed according to the oxygen treatment. As for the catalytic activity in propane dehydrogeantion, sintered PtSn catalyst treated with oxygen at 500 ℃ showed best activity and recovery of initial activity. It was confirm that catalyst after oxygen treatment at 500 ℃ showed high dispersion of Pt and decreased particle size as the results of CO pulse chemisorption and XRD of catalyst, and thus the redispersion of PtSn particles in sintered catalyst was occurred. Catalytic activity was recovered due to redispersion using oxygen treatment, and the activity recovery of the PtSn catalyst was higher than that of Pt catalyst.

Self-Sensing and Interfacial Evaluation of Ni Nanowire/Polymer Composites Using Electro-Macromechanical Technique (전기적 미세역학적 시험법을 이용한 Ni nanowire강화 고분자 복합재료의 자체 감지능 및 계면 물성평가)

  • Kim, Sung-Ju;Yoon, Dong-Jin;Hansen George;DeVries K. Lawrence;Park, Joung-Man
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.20-27
    • /
    • 2006
  • Self-sensing and interfacial evaluation of Ni nanowire/polymer composites were investigated using electro-macromechanical technique, which can be used fur a feasible sensing measurement on tensile and compressive loading/consequent unloading, temperature, and humidity. Mechanical properties of Ni nanowire with different aspect ratio and adding contents in either epoxy or silicone composites were measured indirectly using electro-pullout test under uniform and non-uniform cyclic loadings. Comparing apparent modulus with the conventional mechanical tensile modulus of Ni nanowire/epoxy composites, the trends were consistent with each other. Ni nanowire/epoxy composites showed the sensing response on humidity and temperature. Self-sensing on applied tensile and compressive loading/unloading was also responded for Ni nanowire/silicone composites via electrical contact resistivity showing the opposite trend between tension and compression. It can be due to the different electrically-interconnecting mechanisms of dispersed Ni nanowires embedded in silicone matrix.

Mineralogical and Geochemical Studies on the Daum Vent Field, Central Indian Ridge (인도양 중앙해령 Daum 열수분출대의 광물·지구화학적 연구)

  • Ryoung Gyun Kim;Sun Ki Choi;Jonguk Kim;Sang Joon Pak;Wonnyon Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.765-779
    • /
    • 2023
  • The Daum Vent Field (DVF) was newly discovered in the Central Indian Ridge during the hydrothermal expedition by the Korea Institute of Ocean Science & Technology (KIOST) in 2021. In this paper, we describe the detailed mineralogy and geochemistry of hydrothermal chimney and mound to understand the nature of hydrothermal mineralization in the DVF. The mineral assemblages (pyrite±sphalerite±chalcopyrite) of dominant sulfides, FeS contents (mostly <20 mole %) of sphalerite, and (Cu+Zn)/Fe values (0.001-0.22) of bulk compositions indicate that the DVF has an strong affinity with basaltic-hosted seafloor massive sulfide (SMS) deposit along the oceanic ridge. Combined with the predominance of colloform and/or dendritic-textured pyrite and relatively Fe-poor sphalerite in chimneys, the fluid-temperature dependency of trace element systematics (Co, Mn, and Tl) between chimney and mound indicates that the formation of mound was controlled by relatively reducing and high-temperature fluids compared to chimney. The δ34S values (+8.31 to +10.52‰) of pyrite reflect that sulfur and metals were mainly leached from the associated basement rocks (50.6-61.3%) with a contribution from reduced seawater sulfur (38.7-49.4%). This suggests that the fluid-rock interaction, with little effect of magmatic volatile influx, is an important metal source for the sulfide mineralization in the DVF.

Thermogravimetric Analysis of Black Mass Components from Li-ion Battery (폐이차전지 블랙 매스(Black Mass) 구성 성분의 열중량 특성 분석)

  • Kwanho Kim;Kwangsuk You;Minkyu Kim;Hoon Lee
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.25-33
    • /
    • 2023
  • With the growth of the battery industry, a rapid increase in the production and usage of lithium-ion batteries is expected, and in line with this, much interest and effort is being paid to recycle waste batteries, including production scrap. Although much effort has been made to recycle cathode material, much attention has begun to recycle anode material to secure the supply chain of critical minerals and improve recycling rates. The proximate analysis that measures the content of coal can be used to analyze graphite in anode material, but it cannot accurately analyze due to the interaction between the components of the black mass. Therefore, in this study, thermogravimetric analysis of each component of black mass was measured as the temperature increased up to 950℃ in an oxygen atmosphere. As a result, in the case of cathode material, no change in mass was measured other than a mass reduction of about 5% due to oxidation of the binder and conductive material. In the case of anode material, except for a mass reduction of about 2% due to the binder, all mass reduction were due to the graphite(fixed carbon). In addition, metal conductors (Al, Cu) were oxidized and their mass increased as the temperature increased. Thermal analysis results of mixed samples of cathode/anode show similar results to the predictive values that can be calculated through each cathode and anode analysis results.

A Study on the Characteristics of a Pt/TiO2 Catalyst Prepared by Liquid-Phase Ruduction for Formaldehyde Oxidation at Room Temperature (액상환원 기반 Pt/TiO2 촉매 제조를 이용한 포름알데히드 상온 산화 반응 특성 연구)

  • Jae Heon Kim;Younghee Jang;Geo Jong Kim;Sung Chul Kim;Sung Su Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.612-618
    • /
    • 2023
  • Modern society spends more than 80% of its daily life indoors, emphasizing the need for attention to indoor air pollution due to the improvement in living standards. In this study, the performance and reaction characteristics of the Pt/TiO2 catalysts prepared by liquid-phase reduction for the removal of formaldehyde (HCHO), one of the indoor air pollutants, at room temperature without the need for additional light or heat were investigated. As a result, it showed that catalysts prepared by the same method showed approximately 40~80% various activities depending on the type of TiO2. XRD, BET, and XPS analyses were performed to investigate the particle size, crystal structure, specific surface area, and O/Ti molar ratio of the support material, and it revealed that the correlation between the properties and performance was insignificant. To explore the oxidation reaction pathway of formaldehyde (HCHO), in situ DRIFT analysis using carbon monoxide and H2-TPR was perfomed. The results revealed that the performance was demonstrated by the oxidation state of the active metal and the adsorption-desorption characteristics of the adsorbate species.

Temperature-Programmed Reduction of Copper Oxide Supported on ${\gamma}-Al_2O_3$ and $SiO_2$ (${\gamma}-Al_2O_3$$SiO_2$에 입혀진 산화 구리의 승온 환원)

  • Hwa-Gyung Lee;Chong-Soo Han;Min-Soo Cho;Kae-Soo Lee;Hakze Chon
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.415-422
    • /
    • 1986
  • The metal-support interaction of copper oxide supported on ${\gamma}$-alumina and silica was studied by X-ray diffraction (XRD) and temperature-programmed reduction(TPR). It was found that XRD pattern of CuO can not be observed up to 5.0wt % copper content for CuO/${\gamma}-Al_2O_3$ while CuO/$SiO_2$ sample shows the CuO pattern even at 2.5wt% copper content. $H_2-$TPR of CuO/${\gamma}-Al_2O_3$ system shows four major peaks at 145${\circ}C$, 185${\circ}C$, 210${\circ}C$, and 250${\circ}C$. In the case of CuO/$SiO_2$, a large peak at 250${\circ}C$ was appeared accompanying a small peak at 425${\circ}C$. Comparing the TPR peaks with that of copper aluminate which was prepared from the calcination of CuO/${\gamma}-Al_2O_3$ at 1000${\circ}C$, the peaks at around 145${\circ}C$, 200${\circ}C$ (185${\circ}C$ and 210${\circ}C$), and 250${\circ}C$ were corresponded to $Cu^+$ ion in CuO interacting ${\gamma}-Al_2O_3$, $Cu^+$ ions in defect sites of ${\gamma}-Al_2O_3$ and $Cu^{2+}$ ion in the bulk CuO layer, respectively. From the results, it was concluded that there is considerable metal-support interaction in CuO on ${\gamma}-Al_2O_3$ and the interaction results in a stabilization of $Cu^+$ ion in the system.

  • PDF

Preservation Conditions of Aqueous Samples Containing silver Nanomaterials (은나노물질을 포함한 수질시료의 보관조건)

  • Kang, Mun Hee;Park, Sol;Lee, Sang-Woo;Kim, Hyun-A;Lee, Byung-Tae;Eom, Ig-Chun;Kim, Soon-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.218-227
    • /
    • 2015
  • A prerequisite for precise quantification of nanomaterials contained in environmental samples is to prepare suitable preservation conditions of samples. This study was initiated to suggest preservation conditions of aqueous samples for analyses of metal nanomaterials. Variation in the size of silver nanomaterial (cit-AgNP) was observed according to change in various conditions, such as pH, electrolyte concentration, temperature, nanomaterial concentration, and time. Aggregation of AgNP was characterized for each environmental condition, and finally proper preservation conditions of samples were proposed based on experimental results on AgNP aggregation. In addition, the preservation period of sample was computed by the doublet time of AgNP. The results indicate that the aggregation rate of cit-AgNP was close to 0 at the conditions of pH of ${\geq}7$, electrolyte ($Ca(NO_3)_2$) concentration of ${\leq}3mM$, temperature of $4^{\circ}C$, and cit-AgNP concentration of ${\leq}2mg/L$. Furthermore, the experimental results on doublet time of cit-AgNP suggest that maximum preservation period was evaluated to be 15.79~17.53 days when the concentration of 100 nm cit-AgNP is assumed to be $1{\mu}g/L$ which is considered as an environmentally-relevant concentration of engineered nanomaterials. Our results suggest that samples should be preserved at $4^{\circ}C$ and analyzed within 2 weeks.

Characteristics of Lactate Dehydrogenase Produced from Lactobacillus sp. FFy111-1 as a Ruminant Probiotic (반추동물용 활성제로서 Lactobacillus sp. FFy111-1이 생산한 Lactate Dehydrogenase의 특성에 관한 연구)

  • Sung, H.G.;Kim, D.K.;Bae, H.D.;Shin, H.T
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.625-634
    • /
    • 2004
  • The objective of this experiment is to study the possibility of lactate dehydrogenase(LDH) enzyme to prevent lactate accumulation in the rumen, For understanding capacity of bacterial LDH in rumen environments, this study was conducted to explore the effects of temperature, pH, VFAs and metal ions on Lactobacillus sp. FFy111-1's LDH activity, and the LDH activation in rumen fluid accumulated lactate. The optimum pH and temperature of LDH were pH 7.5 and 40$^{\circ}C$, respectively. The LDH activity had a good thennostability at range from 30 to 50$^{\circ}C$. The highest pH stability of the enzyme was at ranges from pH 7.0 to 8.0 and the enzyme activities showed above 64% level of non-treated one at pH 6.0 and 6.5. The LDH was inactivated by VFAs treatments but was enhanced by metal ion treatments without NaCl and $CuSO_4$ Especially, the LDH activity was increased to 127% and 124% of its original activity by 2 mM of $BaCl_2$ and $MnSO_4$, addition, respectively. When the acidic rumen fluid was treated by LDH enzyme of Lactobacillus sp. FFy111-1, the lactate concentration in the rumen fluid was lower compared with non-treated rumen fluid(P<0.05). This lactate reduction was resulted from an action of LDH. It was proved by result of purified D,L-LDH addition that showed the lowest lactate concentration among the treatments(P<0.05). Although further investigation of microbial LDH and ruminal lactate is needed, these findings suggest that the bacterial LDH has the potential capability to decrease the lactate accumulated in an acidic rumen fluid. Also, screening of super LDH producing bacteria and technical development for improving enzyme activity in rumen environment are essential keys for practical application.

Base-metal Mineralization in the Cretaceous Gyeongsang Basin and Its Genetic Implications, Korea: the Haman-Gunbug-Goseong(-Changwon) and the Euiseong Metallogenic Provinces (한국 경상분지 백악기 비철금속 광화작용과 그 성인적 의의: 함안-군북-고성(-창원) 및 의성 광상구를 중심으로)

  • 이상렬;최선규;소칠섭;유인창;위수민;허철호
    • Economic and Environmental Geology
    • /
    • v.36 no.4
    • /
    • pp.257-268
    • /
    • 2003
  • The Cretaceous magmatism in the Gyeongsang Basin, Korea, led to the formation of two contrasting metallogenic provinces: the Haman-Gunbug-Goseong(-Changwon) (HGGC) and the Euiseong (EU). The mineralization in the HGGC metallogenic province represents copper, gold and iron of porphyry-related deposits that display close relationships in time and space with subvolcanic granitoids. Much of copper-gold-forming events in this province are consistently constrained to the period between ca. 89 and 81 Ma. The hydrothermal systems of copper-gold vein deposits in the HGGC province are associated with ore-forming fluids of high to intermediate temperature (300∼50$0^{\circ}C$) with high salinity (20∼55 equiv. wt. % NaCl). The ore-forming fluids become progressively more diluted by the incorporation of decreased quantities of magmatic water further from the nearby intrusion, suggesting significant input and fluid mixing of a meteoric water component to the magmatic fluids during the late stage of geothermal systems. In contrast, the EU metallogenic province is characterized by polymetallic vein deposits that are consistently constrained to a period of 78∼60 Ma. The geothermal systems of polymetallic vein deposits in the EU province are derived from a narrow range of intermediate temperature (200∼40$0^{\circ}C$) with relatively low salinity(1∼7 equiv. wt.% NaCl). It may represent a mixed fluid of magmatic and meteoric waters. The base-metal mineralization in the Gyeongsang Basin shows a close spatial and temporal distinction between the proximal environment derived from shallow-level granitoids in the southwestern HGGC province and the distal condition derived from volcanic environments in the northwestern EU province.