• Title/Summary/Keyword: Metal temperature

Search Result 4,836, Processing Time 0.029 seconds

Microstructure and Mechanical Property of Brazed Joint in Duplex Stainless Steel, UNS32550 (브레이징한 2상 스테인리스강 UNS32550의 미세조직 및 기계적 특성)

  • 김대업;강정윤
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.64-69
    • /
    • 2003
  • The bonding phenomena and mechanical property of duplex stainless steel during brazing have been investigated. The UNS32550 was used for base metal, and the MBF50 was used for insert metal. Brazing was carried out under the various conditions (brazing temperature : 1473K, 1498K, holding time : 0∼1.8ks). There were various microconstituents in the bonded interlayer because of reaction between liquid insert metal and base metal. In the early stage of brazing, BN is formed in the bonded interlayer and base metal near the bonded layer. Cr made is formed in the bonded interlayer. The amount of BN and Cr nitrides decrease with the increase of bonding temperature and holding time. Superior shear strength of 550MPa is obtained by restraining the formation of nitrides. (Received January 17, 2003)

Singular Stress Field Analysis and Strength Evaluation in Ceramic/Metal Joints (세라믹/금속접합제의 응력특이장 해석 및 강도평가)

  • 박영철;한근조;허선철;강재욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.470-474
    • /
    • 1997
  • Since the ceramic/metal joints is joined at high temperature, the residual stress will develop during when cooled from bonding temperature due to remarkable difference of thermal expansion coefficient between creamic and metal. Moreover, the edge of jointed interface makes singular stress field in the ceramic/metal joints and this singular stress field much influences on the strength of joints. In this study, The influence of residual stress, mechanical load and repeat thermal sysle was estimated in the ceramic/metal joints. According to this influence, the change of singular stress field was analyed and then strength test, X-ray measurement are performed.

  • PDF

The Effect of Volume and Precious Metal loading on the Performance of Pd+Rh Three Way Catalysts (Pd+Rh 삼원촉매에서 촉매체적 및 귀금속량이 정화성능에 미치는 영향)

  • 김계윤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.389-397
    • /
    • 1999
  • Recently the use of Pd catalyst have been continued to expand because of cost avaliabilityand performance advantages. Especially the Pd+Rh catalyst instead of the Pt+Rh catalyst had been used for most of three way catalysts because of the more stringent emission standards and its higher temperature effectiveness. The main purpose of this study is to investigate the design parameter impacts on the Pd+Rh cat-alyst for the automotive exhaust catalysts application. This study was investigated on the catalyst efficiency for the volume and the precious metal loading of the Pd+Rh ceramic monolithic cata-lyst. And experiments concerning the effects of volume and precious metal loading on Pd+Rh three way catalysts were conducted to examined the catalyst light-off temperature and conver-sion efficiency on higher volume demonstrated almost similar performance. But their effects on higher precious metal loading demonstrated considerably better performance.

  • PDF

Compressive Properties of Amorphous Metal Fiber Reinforced Concrete Exposed to high Temperature

  • Lee, Jun-Cheol;Kim, Wha-Jung;Lee, Chang-Joon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.183-193
    • /
    • 2012
  • Compressive property of high strength concrete with amorphous metal fibers subject to high temperature has been investigated. The measure of this investigation includes explosive spalling, weight loss, residual compressive strength, strain at peak stress, elastic modulus, and residual energy absorption capacity after exposure to $400^{\circ}C$, $600^{\circ}C$and $800^{\circ}C$. In addition to the amorphous metal fiber, two other types of fibers (polypropylene fiber and hooked-end steel fiber) were also included in this investigation for comparison. The experimental program was conducted with high strength concrete using several combinations of the fiber types. The testing result shows that the concrete with amorphous metal fibers plus polypropylene fibers shows a superior behavior than those using other combination or single fiber type ingredient.

Effect of Milling Temperature on Formation of Al-Cr-Zr Metal Powder (Al-Cr-Zr 분말형성에 미치는 밀링 온도의 영향)

  • 김현승
    • Journal of Powder Materials
    • /
    • v.7 no.1
    • /
    • pp.19-26
    • /
    • 2000
  • Al-Cr-Zr metal powders were prepared by cryo-milling(-75$^{\circ}C$),ambi-milling(25$^{\circ}C$) and warm-milling(200$^{\circ}C$) to investige the effect of milling temperature. The morphogical changes and microstructural evolution of Al-6wt.%Cr-3wt.%Zr metal powder ball milling were investigated by SEM, OM and XRD. The cryo-milling at -75$^{\circ}C$ caused the more refinement of powder particle size than ambi-milling and warm-milling. The partic morpholgy of Al-Cr-Zr metal powders changed changes into spheroidal particles at 25$^{\circ}C$and spherical particles at 200$^{\circ}C$The spherical particles were formed by agglomertion and contiuous wrapping of the spheroidal particles. The calculated Al crystallite size in Al-Cr-Zr metal powders by the Scherer equation were refined rapidly for short milling time -75$^{\circ}C$compared with milling at 25$^{\circ}C$ and 200$^{\circ}C$.

  • PDF

A Study on the III-nitride Light Emitting Diode with the Chip Integration by Metal Interconnection (금속배선 칩 집적공정을 포함하는 질화물 반도체 LED 광소자 특성 연구)

  • 김근주;양정자
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.3
    • /
    • pp.31-35
    • /
    • 2004
  • A blue light emitting diode with 8 periods InGaN/GaN multi-quantum well structure grown by metal-organic chemical vapor deposition was fabricated with the inclusion of the metal-interconnection process in order to integrate the chips for light lamp. The quantum well structure provides the blue light photoluminescence peaked at 479.2 nm at room temperature. As decreasing the temperature to 20 K, the main peak was shifted to 469.7 nm and a minor peak at 441.9 nm appeared indicating the quantum dot formation in quantum wells. The current-voltage measurement for the fabricated LED chips shows that the metal-interconnection provides good current path with ohmic resistance of 41 $\Omega$.

  • PDF

Numerical Analysis of the Filling Stage in Insert Injection Molding of Microfluidic Chip with Metal Electrodes (금속 전극을 포함한 미세유체 칩의 인서트 사출성형 충전 공정 해석)

  • Lee, Bong-Kee;Na, Seung-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.969-976
    • /
    • 2015
  • In the present study, a numerical investigation of an insert injection molding process was carried out for the development of thermoplastic microfluidic chip plates with metal electrodes. Insert injection molding technology enables efficient realization of a plastic-metal hybrid structure and various efforts have been undertaken to produce novel components in several application fields. The microfluidic chip with metal inserts was proposed as a representative example and its molding process was analyzed. The important characteristics of the filling stage, such as the effects of filling time and thickness of the part cavity, were characterized. Furthermore, the detailed distributions of pressure and temperature at the end of the filling stage were investigated, revealing the significance of metal insert temperature.

Evaporation and stabilization of the heavy metals in EAF dust-clay bodies (EAF 더스트-점토계 소지의 중금속 휘발 및 안정화)

  • Kim, J.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.217-221
    • /
    • 2005
  • The evaporation amounts of volatile Cd, Pb and Zn were characterized by measuring their total concentrations in the EAF dust-clay bodies with various mixing ratio and heat treatment temperature. TCLP test was conducted for evaluating the chemical stabilities of the heavy metal elements. Evaporation amounts and leaching concentrations of heavy metal components were strongly dependent on the mixing ratio and heat treatment temperature. The evaporation of the heavy metal components in EAF dust was effectively suppressed by increasing the clay content. The leaching concentrations of heavy metal components were decreased with increasing clay content and temperature. 20 wt% EAF dust-80 wt% clay sample shows nearly zero evaporation and leaching concentrations of heavy metal components. XRD analysis showed that peak intensities of major crystalline phases such as franklinite and quartz were decreased with increasing the heat treatment temperature which means that the stabilization mechanism of the heavy metals was related with the vitrification process of the $SiO_2$ in the clay.

Metal Injection Molding Analysis of WGV Head in a Turbo Charger of Gasoline Automobile (가솔린 자동차 터보차져용 WGV Head의 금속 분말 사출성형 해석)

  • Park, Bo-Gyu;Park, Si-Woo;Park, Dae-Kyu;Kim, Sang-Yoon;Jeong, Jae-Ok;Jang, Jong-Kwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.388-395
    • /
    • 2015
  • The waste gate valve (WGV) for gasoline vehicles operate in a harsh high-temperature environment. Hence, WGVs are typically made of Inconel 713C, which is a type of Ni-based superalloy. Recently, the metal injection molding (MIM) process has attracted considerable attention for parts used under high-temperature conditions. In this study, an MIM analysis for the head and other parts of the WGV is conducted using a commercial CAE program Moldflow. Further, optimal manufacturing conditions are determined by analyzing flow characteristics at various injection times and locations. Moreover, to improve the accuracy of the analysis results, we compare the actual temperature of the mold during injection processing with that observed through the analysis. As the results, metal injection patterns of analysis are well in accord with these of short shot test. And the temperature variations of analysis is also very similar with those of feedstock when metal injection molding.

THE PROBLEMS IN THE USUAL METHOD OF CLASSIFICATION FOR METAL POOR STARS

  • Lee, Sang-Gak
    • Journal of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.173-181
    • /
    • 1988
  • The usual method of classification for metal poor stars is based on the normal standard stars. In this study, we show that among the sample of stars classified by this method, a systematic bias in the observed classes of metal weakness is found and, also that this method is not appropriate for classification of metal poor stars, by showing that the spectral line dependences on the temperature and pressure in the extreme metal poor stars are different from those in the normal standard stars. Therefore, we suggest that the 3-dimensional classification system, like 2-dimensional MK system, is necessary for an accurate classification of metal poor stars.

  • PDF