• Title/Summary/Keyword: Metal sulfide precipitation

Search Result 19, Processing Time 0.03 seconds

Facile Synthesis, Characterization and Photocatalytic Activity of MWCNT-Supported Metal Sulfide Composites under Visible Light Irradiation

  • Zhu, Lei;Meng, Ze-Da;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.155-160
    • /
    • 2012
  • This paper reported a simple deposition-precipitation method, introducing the metal (Ni, Ag and Sn) and $Na_2S{\cdot}5H_2O$ to preparedispersion metal sulfide nanoparticles on the surface of the Multi-walled carbon nanotube for synthesis of CNT-$M_xS_y$ ($NiS_2$, $Ag_2S$, SnS) composite photocatalysts. The characterization of the prepared CNT-$M_xS_y$ ($NiS_2$, $Ag_2S$, SnS) composites was performed by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis and BET analysis. Furthermore, the MB degradation rate constant for CNT-SnS composite was $5.68{\times}10^{-3}$ under visible light irradiation, which was much higher than the corresponding values for other samples. The detailed formation and photocatalytic mechanism are also provided here.

Development of Diffusion - Precipitation Method to Determine AVS Concentrations in Freshwater Sediments

  • Song, Ki-Hoon
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.4
    • /
    • pp.374-378
    • /
    • 2005
  • A diffusion - precipitation method was developed to determine acid volatile sulfide (AVS) concentrations in freshwater sediments. This method uses silver nitrate as a sulfide trap solution and the concentration of trapped sulfide is determined gravimetrically. The proposed diffusion - precipitation method is more rapid and less expensive than previously developed purge- and - trap methods. Spiked sodium sulfide recoveries using this method $(97\~120\%)$ were similar with a previously developed diffusion - absorption method $(93.8\~115\%)$ and about $20\%$ greater than a previously developed purge-and-trap method $(74.6\~105\%)$. Detection limit of this method $(0.1\;{\mu}mole\;S\;g^{-l})$ was comparable with that of diffusion-absorption method $(0.06\;{\mu}mole\;S\;g^{-l})$ and purge-and-trap method $(0.05\~0.5\;{\mu}mole\;S\;g^{-l})$.

In-situ Precipitation of Arsenic and Copper in Soil by Microbiological Sulfate Reduction (미생물학적 황산염 환원에 의한 토양 내 비소와 구리의 원위치 침전)

  • Jang, Hae-Young;Chon, Hyo-Taek;Lee, Jong-Un
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.445-455
    • /
    • 2009
  • Microbiological sulfate reduction is the transformation of sulfate to sulfide catalyzed by the activity of sulfate-reducing bacteria using sulfate as an electron acceptor. Low solubility of metal sulfides leads to precipitation of the sulfides in solution. The effects of microbiological sulfate reduction on in-situ precipitation of arsenic and copper were investigated for the heavy metal-contaminated soil around the Songcheon Au-Ag mine site. Total concentrations of As, Cu, and Pb were 1,311 mg/kg, 146 mg/kg, and 294 mg/kg, respectively, after aqua regia digestion. In batch-type experiments, indigenous sulfate-reducing bacteria rapidly decreased sulfate concentration and redox potential and led to substantial removal of dissolved As and Cu from solution. Optimal concentrations of carbon source and sulfate for effective microbial sulfate reduction were 0.2~0.5% (w/v) and 100~200 mg/L, respectively. More than 98% of injected As and Cu were removed in the effluents from both microbial and chemical columns designed for metal sulfides to be precipitated. However, after the injection of oxygen-rich solution, the microbial column showed the enhanced long-term stability of in-situ precipitated metals when compared with the chemical column which showed immediate increase in dissolved As and Cu due to oxidative dissolution of the sulfides. Black precipitates formed in the microbial column during the experiments and were identified as iron sulfide and copper sulfide. Arsenic was observed to be adsorbed on surface of iron sulfide precipitate.

Feasibility Evaluation for Remediation of Groundwater Contaminated with Heavy Metal using Calcium Polysulfide in Homogeneous media (균질한 매질 내 Calcium polysulfide 주입에 따른 고농도 중금속 오염 지하수 정화 타당성 검토)

  • Hyeon Woo Go;Jin Chul Joo;Kyoungphile Nam;Hee Sun Moon;Sung Hee Yoon;Dong Hwi Lee;So Ye Jang
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • In this study, column tests using relatively uniform Jumunjin sand media were conducted to evaluate the feasibility of calcium polysulfide (CaSx, CPS) in removing high concentration of Zn2+ in groundwater. The injected CPS solution reacted rapidly with Zn2+ in artificial groundwater and effectively reduced Zn2+ by more than 99% through metal sulfide precipitation. Since the density (d = 1.27 g/cm3 ) of CPS solution was greater than that of water, CPS solution settled down rapidly while capturing Zn2+ and formed stable CPS layer similar to dense nonaqueous phase liquid. Mass balance analysis on Zn2+ in CPS solution suggested that CPS solution effectively reacted with Zn2+ to form metal sulfide precipitates except for high groundwater seepage velocity of 400 cm/d. With greater groundwater seepage velocity, injected CPS did not completely dissolve at the CPS-water interface, but a partially-misible CPS layer continuously moved and reacted with Zn2++ in the direction of groundwater flow. Since hydraulic conductivity (Kh) decreased slightly due to the generated metal precipitates in the inter-pores of media, injection of CPS solution should be optimized to prevent clogging. As evidenced by both XRF and SEM/EDS results, ZnS precipitates were clearly observed through the reaction between the CPS solution and Zn2+. Further study is warranted to evaluate the feasibility of CPS to remove high-concentration heavy metalcontaminated groundwater in complex and heterogeneous media.

Ex-situ Remediation of a Contaminated Soil of Fe Abandoned Mine using Organic Acid Extractants (유기산 추출에 의한 철 폐광산 오염토양의 복원)

  • 정의덕;강신원;백우현
    • Journal of Environmental Science International
    • /
    • v.9 no.1
    • /
    • pp.43-47
    • /
    • 2000
  • A study on the remediation of heavily for ion contaminated soils from abandoned iron mine was carried out, using ex-situ extraction process. Also, oxalic acid as a complex agent was evaluated as a function of concentration, reaction time and mixing ratio of washing agent in order to evaluate Fe removability of the soil contaminated from the abandoned iron mine. Oxalic acid showed a better extraction performance than 0.1N-HCl, i.e., the concentrations of Fe ion extracted from the abandoned mine for the former at uncontrolled pH and the latter were 1,750 ppm and 1,079 ppm, respectively. The optimum washing condition of oxalic acid was in the ratio of 1:5 and 1:10 between soil and acid solution during l hr reaction. The total concentrations of Fe ion by oxalic acid and EDTA at three repeated extraction, were 4,554 ppm and 864 ppm, respectively. The recovery of Fe ions from washing solution was achieved, forming hydroxide precipitation and metal sulfide under excess of calcium hydroxide and sodium sulfide. In addition, the amounted of sodium sulfide and calcium hydroxide for the optimal revovery of Fe were 15g/$\ell$ and 5g/$\ell$ from the oxalic acid complexes, respectively.

  • PDF

Mineralogical studies and extraction of some valuable elements from sulfide deposits of Abu Gurdi area, South Eastern Desert, Egypt

  • Ibrahim A. Salem;Gaafar A. El Bahariya;Bothina T. El Dosuky;Eman F. Refaey;Ahmed H. Ibrahim;Amr B. ElDeeb
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.47-62
    • /
    • 2024
  • Abu Gurdi area is located in the South-eastern Desert of Egypt which considered as volcanic massive sulfide deposits (VMS). The present work aims at investigating the ore mineralogy of Abu Gurdi region in addition to the effectiveness of the hydrometallurgical route for processing these ores using alkaline leaching for the extraction of Zn, Cu, and Pb in the presence of hydrogen peroxide, has been investigated. The factors affecting the efficiency of the alkaline leaching of the used ore including the reagent composition, reagent concentration, leaching temperature, leaching time, and Solid /Liquid ratio, have been investigated. It was noted that the sulfide mineralization consists mainly of chalcopyrite, sphalerite, pyrite, galena and bornite. Gold is detected as rare, disseminated crystals within the gangue minerals. Under supergene conditions, secondary copper minerals (covellite, malachite, chrysocolla and atacamite) were formed. The maximum dissolution efficiencies of Cu, Zn, and Pb at the optimum leaching conditions i.e., 250 g/L NaCO3 - NaHCO3 alkali concentration, for 3 hr., at 250 ℃, and 1/5 Solid/liquid (S/L) ratio, were 99.48 %, 96.70 % and 99.11 %, respectively. An apparent activation energy for Zn, Cu and Pb dissolution were 21.599, 21.779 and 23.761 kJ.mol-1, respectively, which were between those of a typical diffusion-controlled process and a chemical reaction-controlled process. Hence, the diffusion of the solid product layer contributed more than the chemical reaction to control the rate of the leaching process. High pure Cu(OH)2, Pb(OH)2, and ZnCl2 were obtained from the finally obtained leach liquor at the optimum leaching conditions by precipitation at different pH. Finally, highly pure Au metal was separated from the mineralized massive sulfide via using adsorption method.

Release of Cu from SDS micellar solution using complexing agents

  • 김호정;백기태;김보경;이율리아;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.307-310
    • /
    • 2004
  • Micellar enhanced ultrafiltration (MEUF) is a surfactant-based separation process and it can remove heavy metal ions from aqueous stream effectively. However, it is necessary to recover and reuse surfactants for economic feasibility because surfactant is expensive. Foam fractionation was investigated for both anionic and cationic surfactant recovery. Chelating agent such as ethylenediaminetetraacetic acid (EDTA) was studied for the separation of heavy metals from surfactant solution. Anionic surfactants bound with heavy metals can be recovered by lowering pH (acidification). In this study, citric acid and imminodiacetic acid (IDA) were applied to release copper from sodium dodecyl sulfate (SDS) micellar solution and compared with EDTA. Precipitation of copper by ferricynide and sodium sulfide were also investigated. As a result, ca. 100 % of copper was released from SDS micellar solution by 5 mM of EDTA and citric acid. And 3.3 mM of ferricyanide formed precipitate with 82.7 % of copper. 5 mM of IDA and sodium sulfide released or formed precipitate 82.5 % and 58.9 % of copper, respectively. Citric acid is harmless to environments and ferricyanide precipitates with Cu easily. Therefore, it is considered that citric acid and ferricyanide have competiveness over a famous chelating agent, EDTA, for the separation of Cu from SDS solution.

  • PDF

Temporal and Spatial Variation and Removal Efficiency of Heavy Metals in the Stream Water Affected by Leachate from the Jiknaegol Tailings Impoundment of the Yeonhwa II Mine (제2연화광산 직내골 광미장 침출수에 오염된 하천수계의 시.공간적 수질변화 및 중금속 제거효율)

  • Lee, Pyeong-Koo;Kang, Min-Ju;Choi, Sang-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.1
    • /
    • pp.19-31
    • /
    • 2011
  • This study had been carried out to investigate spatial and temporal variations of the concentrations of trace metals for contaminated surface water in creek affected by leachate from the tailings impoundment of the Yeonhwa II mine for about 2 years. It was also to ascertain the metal removal efficiency for potentially deleterious metals by the artificial and natural attenuation processes such as retention ponds and hydrologic mixing of uncontaminated tributaries. The concentrations of As, Pb, Cd, and Cu for leachate in the rainy season were not detected. On the other hand, the concentrations of Zn, Fe, Mn, Al, and $SO_4^{2-}$ in the rainy season for leachate were 2-66 times higher than those in the dry season, due to the oxidation of the sulfide minerals and the dissolution of the secondary minerals. The concentrations of Zn and Cd for leachate and surface water of the upper creek in the rainy season exceeded the criteria of River Water Quality and Drinking Water Quality but in the dry season, those of analyzed all the metals (As, Pb, Cd, Cu, Zn, Cd, Fe, Mn, and Al) for surface water sampled at the study area were below the criteria of River Water Quality and Drinking Water Quality. In regard of the attenuation efficiency for the concentrations of metals, Fe, Mn, Al, Zn, Cd, As, and Cu were removed highly at retention ponds, while the removal efficiency for major cations and sulfate ($SO_4^{2-}$) were related to mixing of the uncontaminated tributaries. Therefore, the major attenuation processes of the metal and sulfate contents in creek affected by leachate from a tailing dump were precipitation (accompanied by metal co-precipitation and sorption), water dilution, and neutralization.

The Treatment of Heavy Metal-cyanide Complexes Wastewater by Zn$^{+2}$/Fe$^{+2}$ Ion and Coprecipitation in Practical Plant (II) (아연백법 및 공침공정을 이용한 복합 중금속-시안착염 폐수의 현장처리(II))

  • Lee, Jong-Cheul;Lee, Young-Man;Kang, Ik-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.524-533
    • /
    • 2008
  • Industrial wastewater generated in the electroplating and metal finishing industries typically contain toxic free and complex metal cyanide with various heavy metals. Alkaline chlorination, the normal treatment method destroys only free cyanide, not complex metal cyanide. A novel treatment method has been developed which destroys both free and complex metal cyanide as compared with Practical Plant(I). Prior to the removal of complex metal cyanide by Fe/Zn coprecipitation and removal of others(Cu, Ni), Chromium is reduced from the hexavalent to the trivalent form by Sodium bisulfite(NaHSO$_3$), followed by alkaline-chlorination for the cyanide destruction. The maximum removal efficiency of chromium by reduction was found to be 99.92% under pH 2.0, ORP 250 mV for 0.5 hours. The removal efficiency of complex metal cyanide was max. 98.24%(residual CN: 4.50 mg/L) in pH 9.5, 240 rpm with 3.0 $\times$ 10$^{-4}$ mol of FeSO$_4$/ZnCl$_2$ for 0.5 hours. The removal efficiency of Cu, Ni using both hydroxide and sulfide precipitation was found to be max. 99.9% as Cu in 3.0 mol of Na$_2$S and 93.86% as Ni in 4.0 mol of Na$_2$S under pH 9.0$\sim$10.0, 240 rpm for 0.5 hours. The concentration of residual CN by alkaline-chlorination was 0.21 mg/L(removal efficiencies: 95.33%) under the following conditions; 1st Oxidation : pH 10.0, ORP 350 mV, reaction time 0.5 hours, 2nd Oxidation : pH 8.0, ORP 650 mV, reaction time 0.5 hours. It is important to note that the removal of free and complex metal cyanide from the electroplating wastewater should be employed by chromium reduction, Fe/Zn coprecipitation and, sulfide precipitation, followed by alkaline-chlorination for the Korean permissible limit of wastewater discharge, where the better results could be found as compared to the preceding paper as indicated in practical treatment(I).

Remediation of Contaminated Soil with Heavy Metal Using Low Molecular Weight Organic Acids (저분자 유기산에 의한 중금속 오염토양의 복원)

  • Jeong, Euh-Deok;Won, Mi-Sook;Yoon, Jang-Hee;Lee, Byung-Ho;Paek, U-Hyon;Joseph A. Gardella, Jr
    • Journal of Environmental Science International
    • /
    • v.10 no.4
    • /
    • pp.299-304
    • /
    • 2001
  • For the remediation of the contaminated soil with heavy metals, Cd, Cr, Cu, and Pb, the reaction parameters were optimized. Tartaric acid (TA) and oxalic acid(OA) as a washing agent and recovery of metals, The optimum washing conditions of TA and OA were in the ratio of 1 : 20 between soil and acid solution during 2hr reaction under unbuffered pH solutions. At the optimized reaction conditions, the removal efficiencies were compared with that of 0.1 M HCl and ethylenediamine tetraacetic acid(EDTA). TA showed higher efficiency on the removal of Pb than that of EDTA, which established for the remediation of contaminated soil with Pb and Cd metals. The recovery of metal ions from washing solution was achieved by adding calcium hydroxide and sodium sulfide by forming the precipitation of metal hydroxide and metal slfied. Optimum amounts of sodium sulgide and calcium hydroxide were Cd = 25g/$\ell$, Cu = 5~10g/$\ell$ and Pb = 5~10g/$\ell$ for the washing solution of OA and 2~5g/$\ell$ for the washing solution of TA, respectively. The amounts of $Na_2S$ and $CA(OH)_2$ for the tartaric acid was less than that of oxalic acid.

  • PDF