• Title/Summary/Keyword: Metal stiffener

Search Result 10, Processing Time 0.025 seconds

Analysis of stiffened Al/SiC FGM plates with cutout under uniaxial and localized in-plane edge loadings

  • P. Balaraman;V.M. Sreehari
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.601-615
    • /
    • 2024
  • Effect of ring and straight stiffeners in the buckling as well as vibration characteristics of metal-ceramic functionally graded plates with cutout subjected to various uniaxial and localized in-plane compressive edge loadings was explored in the present work. In the current work, the distinguishing characteristics of metal and ceramic are merged in a single volume, and power law was used for estimating the material composition throughout thickness. Buckling and free vibration characteristics were studied initially for unstiffened Al/SiC functionally graded plates with cutout. Subsequently, the influence of cutout ratio on buckling load as well as natural frequency for different power law indices was discussed. The functionally graded plate was stiffened by three different stiffener patterns, namely; ring stiffener, straight stiffener, as well as a combination of the ring and the straight stiffener, to enhance the buckling as well as vibration characteristics. The effect of stiffener depth ratio for different stiffener patterns was also presented for functionally graded plates having different cutout sizes under various loading conditions. Such studies on functionally graded material have potential applications in a variety of technological fields including the aerospace and defense sectors.

Design for Strengthening Structural Integrity of the Reflective Metal Insulation in the Nuclear Power Plant (원전 금속단열재의 구조 건전성 강화를 위한 설계 방안)

  • Lee, Sung Myung;Eo, Min Hun;Kim, Seung Hyun;Jang, Kye Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.107-113
    • /
    • 2015
  • The goal of this paper is to investigate structural integrity factors of RMI(reflective metal insulation) to confirm the design requirements in nuclear power plant. Currently, a glass wool insulation is using now, but it will gradually be replaced with the reflective metal insulation maded by stainless steel plates. The main function of an insulation is to minimize a heat loss of vessel and pipes in RCS(reactor coolant system). It has to maintain structural a integrity in nuclear power plant life duration. In this study, the structural integrity analysis was carried out both multi-plate and outer shell plate by using a static analysis and experimental test. First, inner multi-plate has a self support structure for being air space. Because the effect of total static weight in multi-layer plate is low, a plate collapse possibility is not high. Considering optimum thin plate pressing process, it has to pre-check the basic physical properties. Second, the outer segment thickness and stiffener shape are verified by the numerical static analysis, and sample test for both type of panel and cylindrical pipe model.

A Study on the Guidelines on the Insertion of Metal Stiffeners in the Restoration of Stone Cultural Heritages (석조문화재 복원을 위한 금속보강재 매입방법 표준화 연구)

  • Lee, Dong-sik;Kim, Hyun-yong;Kim, Sa-dug;Hong, Seong-geol
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.3
    • /
    • pp.212-228
    • /
    • 2013
  • Stone cultural heritages are repaired by the use of metal stiffeners. The problem is that this type of repair has been based on the experience of workers without specific guidelines and has caused various problems. This is to suggest the structural reinforcement and behavioral characteristics of metal rods to minimize the secondary damage of materials and have the specimens tested and verified to establish the guidelines on how to insert metal stiffeners. When only epoxy resin is applied to the cut surface, only 70% of the properties of the parent material are regenerated and it is required to structurally reinforce the metal stiffener for the remaining 30%. The metal rod is under the structural behavior after the brittle failure of stone material and the structural behavior does not occur when the metal stiffener is below 0.251%. When it accounts for over 0.5%, it achieves structural reinforcement, but causes secondary damage of parent materials. The appropriate ratio of metal stiffener for the stone material with the strength of $1,500kgf/cm^2$, therefore, should be between 0.283% and 0.377% of the cross section of attached surface to achieve reversible fracture and ductility behavior. In addition, it is more effective to position the stiffeners at close intervals to achieve the peak stress of metal rod against bending load and inserting the stiffener into the upper secions is not structurally supportive, but would rather cause damage of the parent material. Thus, most stiffeners should be inserted into the lower part and some into the central part to work as a stable tensile material under the load stress. The dispersion effect of metal rods was influenced by the area of reinforcing rods and unrelated to their diameter. However, it ensures stability under the load stress to increase the number of stiffeners considering the cross section adhered when working on large-scale structures. The development length is engineered based upon the diameter of stiffener using the following formula: $l_d=\frac{a_tf_y}{u{\Sigma}_0}$. Also, helically-threaded reinforcing rods should be used to perform the behaviors as a structural material.

The stiffness-degradation law of base metal after fatigue cracking in steel bridge deck

  • Liang Fang;Zhongqiu Fu;Bohai Ji;Xincheng Li
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.239-251
    • /
    • 2023
  • The stiffness evaluation of cracked base metal is of great guidance to fatigue crack reinforcement. By carrying out fatigue tests and numerical simulation of typical cracking details in steel box girder, the strain-degradation law of cracked base metal was analyzed and the relationship between base metal stress and its displacement (stiffness) was explored. The feasibility of evaluating the stress of cracked base metal based on the stress field at the crack tip was verified. The results demonstrate that the stiffness of cracked base metal shows the fast-to-slow degradation trend with fatigue cracking and the base metal at 50mm or more behind the crack tip basically lose its bearing capacity. Drilling will further accelerate stiffness degradation with the increase of hole diameters. The base metal stress has a negative linear relation with its displacement (stiffness), The stress of cracked base metal is also related to stress intensity factor and its relative position (distance, included angle) to the crack tip, through which the local stiffness can be effectively evaluated. Since the stiffness is not uniformly distributed along the cracked base metal, the reinforcement patch is suggested to be designed according to the stiffness to avoid excessive reinforcement for the areas incompletely unloaded.

Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations

  • Foroutan, Kamran;Ahmadi, Habib
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.51-73
    • /
    • 2020
  • The present paper investigates the simultaneous resonance behavior of spiral stiffened multilayer functionally graded (SSMFG) cylindrical shells with internal and external functionally graded stiffeners under the two-term large amplitude excitations. The structure is embedded within a generalized nonlinear viscoelastic foundation which is composed of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness. The cylindrical shell has three layers consist of ceramic, FGM, and metal. The exterior layer of the cylindrical shell is rich ceramic while the interior layer is rich metal and the functionally graded material layer is located between these layers. With regard to classical shells theory, von-Kármán equation, and Hook law, the relations of stress-strain are derived for shell and stiffeners. The spiral stiffeners of the cylindrical shell are modeled according to the smeared stiffener technique. According to the Galerkin method, the discretized motion equation is obtained. The simultaneous resonance is obtained using the multiple scales method. Finally, the influences of different material and geometrical parameters on the system resonances are investigated comprehensively.

Post-buckling of cylindrical shells with spiral stiffeners under elastic foundation

  • Shaterzadeh, Alireza;Foroutan, Kamran
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.615-631
    • /
    • 2016
  • In this paper, an analytical method for the Post-buckling response of cylindrical shells with spiral stiffeners surrounded by an elastic medium subjected to external pressure is presented. The proposed model is based on two parameters elastic foundation Winkler and Pasternak. The material properties of the shell and stiffeners are assumed to be continuously graded in the thickness direction. According to the Von Karman nonlinear equations and the classical plate theory of shells, strain-displacement relations are obtained. The smeared stiffeners technique and Galerkin method is used to solve the nonlinear problem. To valid the formulations, comparisons are made with the available solutions for nonlinear static buckling of stiffened homogeneous and un-stiffened FGM cylindrical shells. The obtained results show the elastic foundation Winkler on the response of buckling is more effective than the elastic foundation Pasternak. Also the ceramic shells buckling strength higher than the metal shells and minimum critical buckling load is occurred, when both of the stiffeners have angle of thirty degrees.

A Study on the Anchorage Length of Metal Stiffeners for the Structural Reinforcement of Stone Cultural Heritages (석조문화재의 구조적 보강을 위한 금속보강재 정착길이 연구)

  • Kim, Sa-Dug;Lee, Dong-Sik;Kim, Hyun-Yong
    • Journal of Conservation Science
    • /
    • v.28 no.2
    • /
    • pp.141-151
    • /
    • 2012
  • It was the 1900s that the damaged materials of stone heritages began to be preserved and managed for the purpose of reuse, especially since cement, an inorganic material, began to be used during the Japanese colonial period. Epoxy resin, an organic material, was introduced to architecture around the turn of the 1990s, and has been being used across the board. In particular, filler mixtures began to be aggressively used for the structural reinforcement of severed materials. The problem was metal stiffeners used for structural reinforcement. The anchorage length varied depending in different conservation scientists, and as a result the secondary damage was apt to occur in the materials. In this study, hereat, a calculation was made of the most effective anchorage length with the minimization of material damage. The results were as in the following: the anchorage length of an 8-milimeter-across (ø8) metal stiffener was found to be most effective at 60.88mm. Those of ø12 and ø16 were 60.88mm and 91.32mm respectively. In the case of other calibers, the anchorage length was calculated by a formula ${\ell}_d=a_tf_y/u{\Sigma}_0$. In the experiment, helically-threaded round bars were used as metal stiffeners in order that they could bear surcharge loads such as bending, shear and constriction.

Deterioration Assessment and Structural‐Reinforcement of Stone Lantern of the Four Guardian Kings in Beopjusa Temple, Boeun (보은 법주사 사천왕석등의 비파괴 훼손도 평가 및 구조보강)

  • Choie, Myoungju;Lee, Myeong Seong;Jun, Yu Gun;Lee, Mi Hye;Kim, Yuri;Ha, Jun Kyeong
    • Journal of Conservation Science
    • /
    • v.33 no.1
    • /
    • pp.25-33
    • /
    • 2017
  • The stone lantern of the four guardian kings in the Beopjusa temple at Boeun was mainly made of biotite granodiorite consisting of porphyritic-textured potassium feldspar and included in ilmenite series. A base stone made of alkali granite was buried, after founded its place during an earlier restoration process. Cracking and break out are noticeable on this object. In addition, discoloration, salt crusting, and epiphytes were observed. The lantern was vulnerable in terms of physical and structural stability caused by cracking in the front and back of the light chamber and in the non-horizontal direction. According to the conservational condition of the stone lantern, structural reinforcement was carried out based on calculations, including those on the position, size, and anchor length of the titanium stiffener. Chemical and biological pollutants were washed off without damage to the surface of the stone material. Oxygenated iron pieces were replaced with titanium. Ethyl silicate was applied to the surface of the lantern for consolidation and smooth drainage.

Properties of Fire Resistance in Tunnel Concrete According to the Changes of Heating Curve (온도가열곡선 변화에 따른 콘크리트의 내화특성)

  • Pei, Chang-Chun;Noh, Sang-Kyun;Lee, Chan-Young;Lee, Jong-Suk;Lee, Jang-Hwa;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.705-708
    • /
    • 2008
  • To obtain tunnel concrete safety in case of fire, this study analyzed fire proof characteristics by fire proof method change, and the results are as follows. As a fire proof characteristics by RABT temperature heating curve, plain concrete experienced severe spalling by initial extremely high temperature. In view of fire proof method, in the cases of organic fiber mixing method and board method, spalling was prevented, and in the case of spray method, severe spalling of over 100mm depth occurred along with exposure of structural concrete including spray coat by heat stress, etc while metal lath, the stiffener, falls off. As for fire proof characteristics by RWS temperature heating curve, in case of organic fiber inclusion, concrete surface experienced fusion of within 5mm, while in the case of spray method, spray coat was severely spalled to a depth of over 100mm causing structural body concrete to expose its reinforcement, and also in the case of board method, board was fused by high temperature, causing structural body concrete be directly exposed to high temperature, which triggered overall fall-off phenomenon, so in such extraordinary high temperature heating condition, establishment of special fire proof measures is needed.

  • PDF

Re-conservation of the Iron Sword with Ring Pommel with Three-Pointed Leaf Decoration Excavated from Tomb No. 55 at the Dalseong Ancient Tomb Complex in Daegu and a Study of Its Production Method (대구 달성 55호분 출토 삼엽문이자태도의 재보존처리와 제작 기법 연구)

  • Lee, Huisung;Huh, Ilkwon;Ro, Jihyun;Park, Seungwon
    • Conservation Science in Museum
    • /
    • v.24
    • /
    • pp.1-16
    • /
    • 2020
  • This paper presents the process of re-conservation and the results of research on the production method of the Iron Sword with Ring Pommel with Three-Pointed Leaf Decoration, one of the excavation findings from Tomb No. 55 in the Dalseong Ancient Tomb Complex in Daegu. This iron sword is a double weapon with two large swords housed within a single sheath. Four smaller swords are attached to the surface of the sheath, two on the upper portion and the other two below. It is the only such two-in-one weapon excavated intact thus far from an ancient Korean tomb. The records show that it underwent conservation treatment twice in the past. In this study, it was subjected to conservation treatment again to replace the stiffener in some cracking areas, and its material, composition, and production method were analyzed by CT, XRF analysis, and stereoscopic microscopy. The sword is mainly made of copper, but the golden component contains both gold and mercury, which suggests that the copper was plated in gold using mercury amalgamation. The examination of the production methods indicates that it was intended more to demonstrate the authority of its owner rather than to serve any practical use. The two upper small swords on the sheath were made in the same manner as the main swords, and the two small lower swords were cut from a single metal sheet. The sheath was made by cutting two metal sheets. Supports were used to attach the two small swords to the upper portion of the sheath, while the lower portion of the sheath was slit to allow the other two small swords to be inserted into it. The ring pommels of the main swords have a three-pointed leaf decoration. As for the other designs, the handle of the main sword features a series of semicircles, the decorative bands on the sheath have waves in dots, and the fish tail of the sheath shows diagonal lines of dots.