• Title/Summary/Keyword: Metal silicon

Search Result 872, Processing Time 0.028 seconds

A Study on the etching mechanism of $CeO_2$ thin film by high density plasma (고밀도 플라즈마에 의한 $CeO_2$ 박막의 식각 메커니즘 연구)

  • Oh, Chang-Seok;Kim, Chang-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.12
    • /
    • pp.8-13
    • /
    • 2001
  • Cerium oxide ($CeO_2$) thin film has been proposed as a buffer layer between the ferroelectric thin film and the Si substrate in Metal-Ferroelectric-Insulator-Silicon (MFIS) structures for ferroelectric random access memory (FRAM) applications. In this study, $CeO_2$ thin films were etched with $Cl_2$/Ar gas mixture in an inductively coupled plasma (ICP). Etch properties were measured for different gas mixing ratio of $Cl_2$($Cl_2$+Ar) while the other process conditions were fixed at RF power (600 W), dc bias voltage (-200 V), and chamber pressure (15 mTorr). The highest etch rate of $CeO_2$ thin film was 230 ${\AA}$/min and the selectivity of $CeO_2$ to $YMnO_3$ was 1.83 at $Cl_2$($Cl_2$+Ar gas mixing ratio of 0.2. The surface reaction of the etched $CeO_2$ thin films was investigated using x-ray photoelectron spectroscopy (XPS) analysis. There is a Ce-Cl bonding by chemical reaction between Ce and Cl. The results of secondary ion mass spectrometer (SIMS) analysis were compared with the results of XPS analysis and the Ce-Cl bonding was monitored at 176.15 (a.m.u). These results confirm that Ce atoms of $CeO_2$ thin films react with chlorine and a compound such as CeCl remains on the surface of etched $CeO_2$ thin films. These products can be removed by Ar ion bombardment.

  • PDF

Performance Comparison of Vertical DMOSFETs in Ga2O3 and 4H-SiC (Ga2O3와 4H-SiC Vertical DMOSFET 성능 비교)

  • Chung, Eui Suk;Kim, Young Jae;Koo, Sang-Mo
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.180-184
    • /
    • 2018
  • Gallium oxide ($Ga_2O_3$) and silicon carbide (SiC) are the material with the wide band gap ($Ga_2O_3-4.8{\sim}4.9eV$, SiC-3.3 eV). These electronic properties allow high blocking voltage. In this work, we investigated the characteristic of $Ga_2O_3$ and 4H-SiC vertical depletion-mode metal-oxide-semiconductor field-effect transistors. We demonstrated that the blocking voltage and on-resistance of vertical DMOSFET is dependent with structure. The structure of $Ga_2O_3$ and 4H-SiC vertical DMOSFET was designed by using a 2-dimensional device simulation (ATLAS, Silvaco Inc.). As a result, 4H-SiC and $Ga_2O_3$ vertical DMOSFET have similar blocking voltage ($Ga_2O_3-1380V$, SiC-1420 V) and then when gate voltage is low, $Ga_2O_3-DMOSFET$ has lower on-resistance than 4H-SiC-DMOSFET, however, when gate voltage is high, 4H-SiC-DMOSFET has lower on-resistance than $Ga_2O_3-DMOSFET$. Therefore, we concluded that the material of power device should be considered by the gate voltage.

Schottky Contact Application을 위한 Yb Germanides 형성 및 특성에 관한 연구

  • Na, Se-Gwon;Gang, Jun-Gu;Choe, Ju-Yun;Lee, Seok-Hui;Kim, Hyeong-Seop;Lee, Hu-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.399-399
    • /
    • 2013
  • Metal silicides는 Si 기반의microelectronic devices의 interconnect와 contact 물질 등에 사용하기 위하여 그 형성 mechanism과 전기적 특성에 대한 연구가 많이 이루어지고 있다. 이 중 Rare-earth(RE) silicides는 저온에서 silicides를 형성하고, n-type Si과 낮은 Schottky Barrier contact (~0.3 eV)을 이룬다. 또한 낮은 resistivity와 Si과의 작은 lattice mismatch, 그리고 epitaxial growth의 가능성, 높은 thermal stability 등의 장점을 갖고 있다. RE silicides 중 ytterbium silicide는 가장 낮은 electric work function을 갖고 있어 n-channel schottky barrier MOSFETs의 source/drain으로 주목받고 있다. 또한 Silicon 기반의 CMOSFETs의 성능 향상 한계로 인하여 germanium 기반의 소자에 대한 연구가 이루어져 왔다. Ge 기반 FETs 제작을 위해서는 낮은 source/drain series/contact resistances의 contact을 형성해야 한다. 본 연구에서는 저접촉 저항 contact material로서 ytterbium germanide의 가능성에 대해 고찰하고자 하였다. HRTEM과 EDS를 이용하여 ytterbium germanide의 미세구조 분석과 면저항 및 Schottky Barrier Heights 등의 전기적 특성 분석을 진행하였다. Low doped n-type Ge (100) wafer를 1%의 hydrofluoric (HF) acid solution에 세정하여 native oxide layer를 제거하고, 고진공에서 RF sputtering 법을 이용하여 ytterbium 30 nm를 먼저 증착하고, 그 위에 ytterbium의 oxidation을 방지하기 위한 capping layer로 100 nm 두께의 TiN을 증착하였다. 증착 후, rapid thermal anneal (RTA)을 이용하여 N2 분위기에서 $300{\sim}700^{\circ}C$에서 각각 1분간 열처리하여 ytterbium germanides를 형성하였다. Ytterbium germanide의 미세구조 분석은 transmission electron microscopy (JEM-2100F)을 이용하였다. 면 저항 측정을 위해 sulfuric acid와 hydrogen peroxide solution (H2SO4:H2O2=6:1)에서 strip을 진행하여 TiN과 unreacted Yb을 제거하였고, 4-point probe를 통하여 측정하였다. Yb germanides의 면저항은 열처리 온도 증가에 따라 감소하다 증가하는 경향을 보이고, $400{\sim}500^{\circ}C$에서 가장 작은 면저항을 나타내었다. HRTEM 분석 결과, deposition 과정에서 Yb과 Si의 intermixing이 일어나 amorphous layer가 존재하였고, 열처리 온도가 증가하면서 diffusion이 더 활발히 일어나 amorphous layer의 두께가 증가하였다. $350^{\circ}C$ 열처리 샘플에서 germanide/Ge interface에서 epitaxial 구조의 crystalline Yb germanide가 형성되었고, EDS 측정 및 diffraction pattern을 통하여 안정상인 YbGe2-X phase임을 확인하였다. 이러한 epitaxial growth는 면저항의 감소를 가져왔으며, 열처리 온도가 증가하면서 epitaxial layer가 증가하다가 고온에서 polycrystalline 구조의 Yb germanide가 형성되어 면저항의 증가를 가져왔다. Schottky Barrier Heights 측정 결과 또한 면저항 경향과 동일하게 열처리 증가에 따라 감소하다가 고온에서 다시 증가하였다.

  • PDF

Improvement of Conductive Micro-pattern Fabrication using a LIFT Process (레이저 직접묘화법을 이용한 미세패턴 전도성 향상에 관한 연구)

  • Lee, Bong-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.475-480
    • /
    • 2017
  • In this paper, the conductivity of the fine pattern is improved in the insulating substrate by laser-induced forward transfer (LIFT) process. The high laser beam energy generated in conventional laser induced deposition processes induces problems such as low deposition density and oxidation of micro-patterns. These problems were improved by using a polymer coating layer for improved deposition accuracy and conductivity. Chromium and copper were used to deposit micro-patterns on silicon wafers. A multi-pulse laser beam was irradiated on a metal thin film to form a seed layer on an insulating substrate(SiO2) and electroless plating was applied on the seed layer to form a micro-pattern and structure. Irradiating the laser beam with multiple scanning method revealed that the energy of the laser beam improved the deposition density and the surface quality of the deposition layer and that the electric conductivity can be used as the microelectrode pattern. Measuring the resistivity after depositing the microelectrode by using the laser direct drawing method and electroless plating indicated that the resistivity of the microelectrode pattern was $6.4{\Omega}$, the resistance after plating was $2.6{\Omega}$, and the surface texture of the microelectrode pattern was uniformly deposited. Because the surface texture was uniform and densely deposited, the electrical conductivity was improved about three fold.

Elastic properties of addition silicone interocclusal recording materials (부가중합형 실리콘 교합인기재의 탄성 특성)

  • Lee, Young-Ok;Kim, Kyoung-Nam
    • Journal of Korean society of Dental Hygiene
    • /
    • v.12 no.3
    • /
    • pp.513-520
    • /
    • 2012
  • Objectives : In this study, contact angle and shore D hardness were measured, and a shark fin test was conducted after selecting five addition silicon(Blu-Mousse, BM; EXABITE II, EX; PERFECT, PF; Regisil$^{(R)}$ Rigid, RE; Silagum$^{(R)}$, SI) in order to figure out the properties of elastomeric interocclusal recording materials and reduce errors at interocclusal recording. 8) Methods : A contact angle was measured using a contact angle analyzer. After placing a drop of liquid on the surface of the specimens of interocclusal recording materials, a contact angle was photographed with a CCD camera on the equipment. In terms of a shark fin test, interocclusal recording materials were mixed for the time proposed by the manufacturer and inserted into the split ring of the Shark fin device. Twenty (20) seconds exactly, a metal rod was removed to make the materials slowly absorbed. Once they hardened, fin height was measured with a caliper after separating molds and trimming the specimens. The shore D hardness was measured with a shore D hardness tester(Model HPDSD, Hans Schmidt & Co. Gmbh, Germany) in sixty (60) minutes after fabricating specimens. In each experiment, five specimens, mean and standard deviation were calculated. A one-way ANOVA test was performed at the p>0.05 level of significance. In terms of correlation among the tests, Pearson correlation coefficient was estimated. For multiple comparison, Scheffe's test was carried out. Results : A contact angle was the highest in EX with $99.23^{\circ}$ (p<0.05) while the result of the shark fin test was the longest in RE with 5.45mm. SI was the lowest (0.27mm) with statistical significance. Among the interocclusal recording materials, significant difference was observed in terms of means (p<0.05). The shore D hardness was the highest in SI with 31.0 while RE was significantly low with 16.4 (p<0.05). Among the materials, statistically significant difference was observed in terms of means when compared to the rest materials (RE), BM, RE and SI (PF and EX) and the remaining materials (BM and SI) (p<0.05). In terms of correlations among the tests, a negative correlation occurred between shore D hardness and shark fin test(r=-0.823, p=0.000). Conclusions : According to the study above, it is necessary to understand the properties of interocclusal recording materials and consider contact angle, shark fin test and properties of shore D hardness to select appropriate materials.

The Second Animal Tests of Artificial Heart Valves (인공심장판막의 개발과 동물실험 -인공심장판막의 2차 동물실험-)

  • 김형묵
    • Journal of Chest Surgery
    • /
    • v.23 no.4
    • /
    • pp.617-621
    • /
    • 1990
  • A heart supplies blood of about 15, 000 liters to each human organ in a day. A normal function of heart valves is necessary to accomplish these enormous work of heart. The disease of heart valve develops to a narrowness of a closure, resulting in an abnormal circulation of blood. In an attempt to eliminate the affliction of heart valves, the operative method to replace with artificial heart valves has developed and saved numerous patients over past 30 years. This replacement operation has been performed since early 1960`s in Korea, but all the artificial heart valves used are imported from abroad with very high costs until recent years. New artificial heart valves have been developed in Korea Advanced Institute of Science and Technology since early 1980`s. The first developed valve was designed with a free-floating pyrolytic carbon disk that is suspended in a titanium cage. The design of the valve was tested in vitro, and in animals in 1987. The results from this study was that the eccentrically placed struts creates a major and minor orifice when the disc opens and stagnation of flow in the area of the minor orifice has led to valve thrombosis. In this work, the design of the valve was changed from a single - leaflet valve to double - leaflet one in order to resolve the problems observed in the first - year tests. Morphological and hemodynamic studies were made for the newly designed valves through the in vitro and in vivo tests. The design and partial materials of the artificial heart valve was improved comparing with first - year`s model. The disc in the valve was modified from single - leaflet to bi - leaflet, and the material of the cage was changed from titanium metal to silicon - alloyed pyrolytic carbon. A test was made for the valve in order to examine its mechanical performance and stability. Morphological and hemodynamic studies were made for the valve that had been implanted in tricuspid position of mongrel dogs. All the test animals were observed just before the deaths. A new artificial heart valve was designed and fabricated in order to resolve the problems observed in the old model. The new valve was verified to have good stability and high resistance to wear through the performance tests. The hemodynamic properties of the valve after implantation were also estimated to be good in animal tests. Therefore, the results suggest that the newly designed valve in this work has a good quality in view of the biocompatibility. However, valve thrombosis on valve leaflets and annulus were found. This morphological findings were in accordance with results of surface polishing status studies, indicating that a technique of fine polishing of the surface is necessary to develop a valve with higher quality and performance.

  • PDF

Study on the growth of 4H-SiC single crystal with high purity SiC fine powder (고순도 SiC 미분말을 적용한 4H-SiC 단결정 성장에 관한 연구)

  • Shin, Dong-Geun;Kim, Byung-Sook;Son, Hae-Rok;Kim, Moo-Seong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.383-388
    • /
    • 2019
  • High purity SiC fine powder with metal impurity contents of less than 1 ppm was synthesized by improved carbothermal reduction process, and the synthesized powder was used for SiC single crystal growth in RF heating PVT device at temperature above 2,100℃. In-situ x-ray image analyzer was used to observe the sublimation of the powder and single crystal growth behavior during the growth process. SiC powder was used as a source of single crystal growth, exhausted from the outside of the graphite crucible at the growth temperature and left graphite residues. During the growth, the flow of raw materials was concentrated in the middle and influenced the growth behavior of SiC single crystals. This is due to the difference in temperature distribution inside the crucible due to the fine powder. After the single crystal growth was completed, the single crystal ingot was cut into a 1 mm thick single crystal substrate and finely polished using a diamond abrasive slurry. A dark yellow 4H-SiC was observed overall of single crystal substrate, and the polycrystals generated in the outer part may be caused by the incorporation of impurities such as the bubble layer mixed in the process of attaching the seed crystal to the seed holder.

Improving the Efficiency of SnS Thin Film Solar Cells by Adjusting the Mg/(Mg+Zn) Ratio of Secondary Buffer Layer ZnMgO Thin Film (2차 버퍼층 ZnMgO 박막의 Mg/(Mg+Zn) 비율 조절을 통한 SnS 박막 태양전지 효율 향상)

  • Lee, Hyo Seok;Cho, Jae Yu;Youn, Sung-Min;Jeong, Chaehwan;Heo, Jaeyeong
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.566-572
    • /
    • 2020
  • In the recent years, thin film solar cells (TFSCs) have emerged as a viable replacement for crystalline silicon solar cells and offer a variety of choices, particularly in terms of synthesis processes and substrates (rigid or flexible, metal or insulator). Among the thin-film absorber materials, SnS has great potential for the manufacturing of low-cost TFSCs due to its suitable optical and electrical properties, non-toxic nature, and earth abundancy. However, the efficiency of SnS-based solar cells is found to be in the range of 1 ~ 4 % and remains far below those of CdTe-, CIGS-, and CZTSSe-based TFSCs. Aside from the improvement in the physical properties of absorber layer, enormous efforts have been focused on the development of suitable buffer layer for SnS-based solar cells. Herein, we investigate the device performance of SnS-based TFSCs by introducing double buffer layers, in which CdS is applied as first buffer layer and ZnMgO films is employed as second buffer layer. The effect of the composition ratio (Mg/(Mg+Zn)) of RF sputtered ZnMgO films on the device performance is studied. The structural and optical properties of ZnMgO films with various Mg/(Mg+Zn) ratios are also analyzed systemically. The fabricated SnS-based TFSCs with device structure of SLG/Mo/SnS/CdS/ZnMgO/AZO/Al exhibit a highest cell efficiency of 1.84 % along with open-circuit voltage of 0.302 V, short-circuit current density of 13.55 mA cm-2, and fill factor of 0.45 with an optimum Mg/(Mg + Zn) ratio of 0.02.

CHARACTERISTICS OF HETEROEPITAXIALLY GROWN $Y_2$O$_3$ FILMS BY r-ICB FOR VLSI

  • Choi, S.C.;Cho, M.H.;Whangbo, S.W.;Kim, M.S.;Whang, C.N.;Kang, S.B.;Lee, S.I.;Lee, M.Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.809-815
    • /
    • 1996
  • $Y_2O_3$-based metal-insulator-semiconductor (MIS) structure on p-Si(100) has been studied. Films were prepared by UHV reactive ionized cluster beam deposition (r-ICBD) system. The base pressure of the system was about $1 \times 10^{-9}$ -9/ Torr and the process pressure $2 \times 10^{-5}$ Torr in oxygen ambience. Glancing X-ray diffraction(GXRD) and in-situ reflection high energy electron diffracton(RHEED) analyses were performed to investigate the crystallinity of the films. The results show phase change from amorphous state to crystalline one with increasingqr acceleration voltage and substrate temperature. It is also found that the phase transformation from $Y_2O_3$(111)//Si(100) to $Y_2O_3$(110)//Si(100) in growing directions takes place between $500^{\circ}C$ and $700^{\circ}C$. Especially as acceleration voltage is increased, preferentially oriented crystallinity was increased. Finally under the condition of above substrate temperature $700^{\circ}C$ and acceleration voltage 5kV, the $Y_2O_3$films are found to be grown epitaxially in direction of $Y_2O_3$(1l0)//Si(100) by observation of transmission electron microscope(TEM). Capacitance-voltage and current-voltage measurements were conducted to characterize Al/$Y_2O_3$/Si MIS structure with varying acceleration voltage and substrate temperature. Deposited $Y_2O_3$ films of thickness of nearly 300$\AA$ show that the breakdown field increases to 7~8MV /cm at the same conditon of epitaxial growing. These results also coincide with XPS spectra which indicate better stoichiometric characteristic in the condition of better crystalline one. After oxidation the breakdown field increases to 13MV /cm because the MIS structure contains interface silicon oxide of about 30$\AA$. In this case the dielectric constant of only $Y_2O_3$ layer is found to be $\in$15.6. These results have demonstrated the potential of using yttrium oxide for future VLSI/ULSI gate insulator applications.

  • PDF

A polymer pH-Selectrode Based on Tribenzylamine as Neutral Carrier (Tribenzylamine 중성운반체를 이용한 pH-선택성 고분자 막전극)

  • Park, Myon-Young;Chung, Koo-Chun;Cho, Dong-Hoe;Lee, Kyeong-Jae;Jeong, Seong-Suk;Park, Sun-Young;Kim, Tae-Hun
    • Analytical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.63-68
    • /
    • 1995
  • For the preparation of pH-selectrode, tribenzylamine, polyvinylchloride, dioctylphthalate, sodium tetraphenylborate and tetrahydrofuran were mixed with 0.02, 0.62, 1.34, 0.02g and 10ml respectively, and added 1g of acetylene black, graphite, silicon carbide or tungsten carbide respectively to improve electric conductivity. The selectrodes of seven kinds were shown linear to hydrogen ion in the range of pH 2 and 9. The best electric conductor for preparation of pH-selectrode based on tribenzylamine as neutral carrier was acetylene black and responded potential of the selectrode to hydrogen ion was shown the values near to theoretical Nernstian slope at $20^{\circ}C$. The interfering effects of the selectrode on hydrogen ion in the presence of alkali and alkaline earth metal ions were shown the better results with less error than glass electrode. The reproducibility and stability were good for use as a selectrode, especially in the presence of fluoride ion.

  • PDF