• Title/Summary/Keyword: Metal post

Search Result 518, Processing Time 0.018 seconds

NC Code Post-Processor Considering Metal Removal Rate (절삭부하 예측을 통한 NC코드 후처리시스템)

  • 이기우;노상도;신동목;한형상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.116-123
    • /
    • 2000
  • This paper presents an NC code post-processor that adjusts feedrates to keep the variation of metal removal rate along the tool paths minimum. Metal removal rate is estimated by virtually machining the part, whose surface model is built from a series of NC codes defined in operation plan, with cutting-tool-assembly models, whose geometry are defined in a machining database. The NC code post-processor modifies the feedrates by the adjustment rules, which are based on the machining knowledge for effective machining. This paper illustrates a procedure fur grouping machining conditions and we also show how to determine an adjustment rule for a machining-condition group. An example part was machined and it shows that the variation of cutting force was dramatically reduced after applying the NC code post-processor. The NC code post-processor is expected to increase productivity while maintaining the quality of the machined part.

  • PDF

Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, A.M.S.
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.567-578
    • /
    • 2020
  • Based on third-order shear deformation shell theory, the present paper investigates post-buckling properties of eccentrically stiffened metal foam curved shells/panels having initial geometric imperfectness. Metal foam is considered as porous material with uniform and non-uniform models. The single-curve porous shell is subjected to in-plane compressive loads leading to post-critical stability in nonlinear regime. Via an analytical trend and employing Airy stress function, the nonlinear governing equations have been solved for calculating the post-buckling loads of stiffened geometrically imperfect metal foam curved shell. New findings display the emphasis of porosity distributions, geometrical imperfectness, foundation factors, stiffeners and geometrical parameters on post-buckling properties of porous curved shells/panels.

Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Yahya, Yahya Zakariya;Barati, Mohammad Reza;Jayasimha, Anirudh Narasimamurthy;Hamouda, AMS
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.701-711
    • /
    • 2020
  • This papers studies nonlinear stability and post-buckling behaviors of geometrically imperfect metal foam doubly-curved shells with eccentrically stiffeners resting on elastic foundation. Metal foam is considered as porous material with uniform and non-uniform models. The doubly-curved porous shell is subjected to in-plane compressive loads as well as a transverse pressure leading to post-critical stability in nonlinear regime. The nonlinear governing equations are analytically solved with the help of Airy stress function to obtain the post-buckling load-deflection curves of the geometrically imperfect metal foam doubly-curved shell. Obtained results indicate the significance of porosity distribution, geometrical imperfection, foundation factors, stiffeners and geometrical parameters on post-buckling characteristics of porous doubly-curved shells.

COMPARISON OF FRACTURE STRENGTH AND PATTERN OF ENDODONTICALLY TREATED TEETH RESTORED WITH FIBER POSTS AND METAL CAST POST (섬유강화 포스트와 금속주조 포스트의 파절강도 밋 파절양상의 비교)

  • Kim Mee-Kyung;Kim Seok-Gyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.5
    • /
    • pp.535-543
    • /
    • 2004
  • Purpose: The purpose of this study is to compare the effect of two fiber post systems and one metal cast post system on the fracture strength and fracture pattern of crowned, endodontically treated teeth with 2 mm-height of the reamining tooth structure. Materials and methods: A total of 36 recently extracted sound human mandibular premolars were selected Each tooth structure of the crown portion except 2mm-height of the one above the cementoenamel junction was removed. After being endodontically treated, they were randomly distributed into 3 groups: group 1, restored with quarts fiber post(D.T. Light-Post), group 2, with glass fiber post(FRC Postec), and group 3, metal cast post and core. All teeth were fully covered with nonprecious metal crowns. Each specimen was embedded in an acrylic resin block and then secured in a universal load-testing machine. A compressive load was applied at a 130 degree angle to the long axis of the tooth until fractured, at a crosshead speed 20mm/min. The highest fracture loads were measured and recorded as the fracture strength of each specimen. Fracture areas were measured on the mid-buccal and mid-lingual point from the crown margins. One-way analysis of variance and Turkey test were used to determine the statistic significance of the different fracture loads and areas among the groups (p<0.05). Results: The mean fracture loads were $1391{\pm}$425N(group 1), $1458{\pm}476N$(group 2) and $1301{\pm}319N$(group 3). The fracture loads among the three groups had no statistically signifiant difference (p>.05). The mean fracture area of the fiber post was closer to the crown margin than that of the metal cast post and core(p<.05). The metal cast post showed unrestorable and catastrophic fracture patterns. Conclusion: Within the limitations of this study, fracture loads with any statistically significant difference were not recorded for endodontically treated teeth restored with two fiber posts and the metal cast post. But teeth restored with the fiber posts typically showed the fracture pattern close to the crown margin, which was almost restorable.

Nonlinear thermal post-buckling analysis of graphene platelets reinforced metal foams plates with initial geometrical imperfection

  • Yin-Ping Li;Gui-Lin She;Lei-Lei Gan;Hai-Bo Liu
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.649-658
    • /
    • 2023
  • Although some scholars have studied the thermal post-buckling of graphene platelets strengthened metal foams (GPLRMFs) plates, they have not considered the influence of initial geometrical imperfection. Inspired by this fact, the present paper studies the thermal post-buckling characteristics of GPLRMFs plates with initial geometrical imperfection. Three kinds of graphene platelets (GPLs) distribution patterns including three patterns have been considered. The governing equations are derived according to the first-order plate theory and solved with the help of the Galerkin method. According to the comparison with published paper, the accuracy and correctness of the present research are verified. In the end, the effects of material properties and initial geometrical imperfection on the thermal post-buckling response of the GPLRMFs plates are examined. It can be found that the presence of initial geometrical imperfection reduces the thermal post-buckling strength. In addition, the present study indicates that GPL-A pattern is best way to improve thermal post-buckling strength for GPLRMFs plates, and the presence of foams can improve the thermal post-buckling strength of GPLRMFs plates, the Foam- II and Foam- I patterns have the lowest and highest thermal post-buckling strength. Our research can provide guidance for the thermal stability analysis of GPLRMFs plates.

COLOR COMPARISON OF VARIOUS POST SYSTEMS WITH EMPRESS 2 CROWNS (포스트의 종류에 따른 Empress 2 도재관의 색상에 관한 비교연구)

  • Lee Young-Soo;Yoo Dong-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.2
    • /
    • pp.197-207
    • /
    • 2001
  • Development of new ceramics and esthetic needs of patients increase the use of all ceramic restorations. Fractured teeth often need metal post and core as foundation for final restoration. When all ceramic restorations are planned, metal post and core may lead to compromised esthetics because of opacity and gray color of metal post and core. Many techniques have been proposed to solve this problem such as application of an opaque porcelain to the metal core or all ceramic post and core. This study was performed to evaluate effect on color of Empress 2 crown according to various post systems. Color was evaluated by the CIE $L^*a^*b^*$ systems and measured by spectrophotometer (Model CM-3500, Minolta, Japan). Specimens were divided into 4 groups as follows Group 1 : gold cast post specimen + Empress 2 crown specimen Group 2 : application of an opaque porcelain to gold cast post specimen + Empress 2 crown specimen Group 3 : cosmopost specimen + Empress 2 crown specimen Group 4 : In-ceram post specimen + Empress 2 crown specimen. The results obtained as follows, 1. $L^*$ Values showed that group 2, 3, 4 were higher than group 1 with significant difference and group 2, 3, 4 were not significantly different. 2. $a^*$ Values and $b^*$ values also showed that group 2. 3, 4 were higher than group 1 with significant difference and group 2, 3, 4 were not significantly different. 3. ${\Delta}E^* ab$ Values showed that ${\Delta}E^* ab$ 3 was the highest value and ${\Delta}E^* ab$ 5 was the lowest value.

  • PDF

Characteristics of the Post-Weld Heat Treatment of Chrome Low Alloy Material for a Power Plant Boiler (발전 보일러용 크롬 저합금강의 용접후열처리 특성)

  • Whe, Jae-Hoon;Moon, Seung-Jae;Yoo, Hoseon
    • Plant Journal
    • /
    • v.6 no.4
    • /
    • pp.56-62
    • /
    • 2010
  • This study investigated characteristics of the post-weld heat treatment of SA213-T23, which was developed for water wall of the ultra super critical power boiler. The temperature of post weld heat treatment should be $730^{\circ}C$ or higher to reduce hardness of the deposit metal and heat affected zone. Coincidently, the temperature should remain $760^{\circ}C$ or lower to prevent hardness of the base metal from dropping. Hardness decline of deposit metal was trivial according to time when the holding time of heat treatment at $740^{\circ}C$ of post-weld heat treatment gradually increased from initial 15 minutes.

  • PDF

Thermal post-buckling of graphene platelet reinforced metal foams doubly curved shells with geometric imperfection

  • Jia-Qin Xu;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.85-94
    • /
    • 2023
  • In the present work, thermal buckling and post-buckling behaviors of imperfect graphene platelet reinforced metal foams (GPRMFs) doubly curved shells are examined. Material properties of GPRMFs doubly curved shells are presumed to be the function of the thickness. Reddy' shell theory incorporating geometric nonlinearity is utilized to derive the governing equations. Various types of the graphene platelets (GPLs) distribution patterns and doubly curved shell types are taken into account. The nonlinear equations are discretized for the case of simply supported boundary conditions. The thermal post-buckling response are presented to analyze the effects of GPLs distribution patterns, initial geometric imperfection, GPLs weight fraction, porosity coefficient, porosity distribution forms, doubly curved shell types. The results show that these factors have significant effects on the thermal post-buckling problems.

A STUDY ON STRESS DISTRIBUTION OF ENDODONTICALLY TREATED TOOTH ACCORDING TO THE VARIOUS POST LENGTH USINGTHREE-DIMENSIONAL FINITE ELEMENT METHOD (포스트 길이가 치근내 응력분산에 미치는 영향에 관한 삼차원 유한요소법적 연구)

  • Choi, Soo-Yong;Lee, Sun-Hyung;Yang, Jae-Ho;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.2
    • /
    • pp.177-197
    • /
    • 1995
  • The endodontically treated tooth is generally restored with post & core, owing to the brittleness and the loss of large amount of tooth structure. Although there have been lots of studies about the endodontically treated teeth, the three-dimensional quantitative studies about the strees distribution of them are in rare cases. In this study, it was assumed that the coronal portion of the upper incisou had severely damaged. After the root canal therapy it was post cored, and restored with PFM crown, for this experiment nine types of model were constructed : 1); long, 2); medium, 3); short gold post for the roots supported with a narmal alveolar bone, 4); long, 5); medium, 6); short gold post for the roots supported with an alveolar bone resorbed to its 1/3 of root length, 7); long, 8); medium, 9); short base metal post for the roots supported with an alveolar bone resorbed to its 1/3 of root length. Force was applied from two directions. One was functional maximum bite force(300N) applied to the spot just lingual to the incisal edge with the angle of 45 degrees to the long axis of the tooth, and the other one was horizontal force(300N) applied to the labial surface. The results analyzed with three-dimensional finite element method were as follows : 1. Stress was concentrated on the middle portion of the labial side dentin of the root and the lingual portion of the apical dentin of the root. Stress in the post showed maximum value at 2 mm above the post apex. 2. In case of the long post and base metal post, strees was concentrated on the apex of the root and the post. 3. In case of the longer post, the displacement on the post-cement interface was lessened. The gold post was more displaceable than the base metal post. 4. In case of the alveolar bone resorption, stress concentrated on the root and the post and displacement on the post-cement interface were increased.

  • PDF

Enhanced Electrochemical Detection of Heavy Metal Ions via Post-synthetic Schiff Base Modification of MWCNT-MOF Composites

  • Yeon-Joo Kim;Seung-Ho Choi;Seon-Jin Choi
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.366-372
    • /
    • 2024
  • In this study, we present a novel approach to improve electrochemical heavy metal ion (HMI) sensing responses via post-synthetic modification of carbon nanotube-based metal-organic framework (MOF) nanocomposites with a Schiff base. UiO66-NH2 was employed as the MOF and incorporated with multi-walled carbon nanotubes (MWCNT) through in-situ growth, enhancing the electrical conductivity of the MWCNT-UiO66-NH2 composite. Subsequently, the Schiff base, which has been proven to be an excellent ligand for metal ion detection, was functionalized onto MWCNT-UiO66-NH2 via post-synthetic modification to improve its HMI absorption capacity. To evaluate the effect of the Schiff base on HMI detection capacity, electrochemical sensing of Cd2+, Pb2+, Cu2+, and Hg2+ was performed in an aqueous solution utilizing the MWCNT-UiO66-Schiff modified electrode as well as the bare electrode. Individual differential pulse anodic stripping voltammetry results revealed that the modified electrode with MWCNT-UiO66-Schiff exhibited increased HMI sensing properties, especially with 1.82-fold improvement in average oxidation currents toward 10 µM of Cu2+ compared to that for a bare glassy carbon electrode. The selective Cu2+-sensing properties of MWCNT-UiO66-Schiff were reflected in the highly selective Cu2-binding affinity of the Schiff base-containing model molecules compared to those of Cd2+, Hg2+, and Pb2+. Our work provides a new strategy for improving the sensing properties of electrochemical HMI sensors by the post-synthetic modification of MWCNT-UiO66 with a Schiff base.