• Title/Summary/Keyword: Metal plate

Search Result 1,037, Processing Time 0.03 seconds

IN VITRO GROWTH OF CANDIDA ALBICANS ON SEVERAL RESILIENT DINTURE LINERS (수종의 탄성 의치상 이장재에 대한 Candida albicans의 성장에 관한 연구)

  • Chung, Chae-Heon;Kim, Kwang-Won;Kim, Dong-Ki;Lee, Zang-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.1
    • /
    • pp.19-27
    • /
    • 1993
  • For the purpose of this study was to determine the growth of Candide albicans on the surface of the resilient denture liners. The discs$(40\times40mm)$ of 2 resilient lining materals (Molloplast B, Mollosil) and one conventional acrylic resin (K-33) and one metal plate were processed and disinfected. Firstly, the test discs were placed into petri dish, and Candide albicans suspensions was overlayed on the test discs. And the test discs were incubated with intermitant shaking for 1 hour, 2 hours, 6 hours, 12 hours, 24 hours. After incubation, imprint culture method was achived and counted the colony on the agar plate. Secondly, the effect of denture cleansing agents on the growth of Candide alibicans on the resilient dentureliners was evaluated. The results were as follows : 1. The growth of Candida albicans on discs of Molloplast B and Mollosil was increased than that on discs of acrylic resin and metal plate (p<0.05). 2. As Candide albicans suspensions were incubated for 2 hours, the growth of Candida albicans on discs of Mollosil was increased than that on discs of Molloplast B (p<0.05), and the growth of Candide albicans on discs of metal plate was increased than that on discs of acrylic resin (p<0.05). 3. As Candide albicans suspensions were incubated for 6 hours, the growth of Candide albicans on discs of Mollosil was increased than that on discs of Molloplast B (p<0.05). 4. The growth of Candide albicans on discs of Mollosil and Molloplast B in treating denture cleansing agent was inhibited than control discs (p<0.05).

  • PDF

Three-dimensional finite element analysis of the stress distribution and displacement in different fixation methods of bilateral sagittal split ramus osteotomy

  • Yun, Kyoung In;Cho, Young-Gyu;Lee, Jong-Min;Park, Yoon-Hee;Park, Myung-Kyun;Park, Je Uk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.5
    • /
    • pp.271-275
    • /
    • 2012
  • Objectives: This study evaluated a range of fixation methods to determine which is best for the postoperative stabilization of a mandibular osteotomy using three-dimensional finite element analysis of the stress distribution on the plate, screw and surrounding bone and displacement of the lower incisors. Materials and Methods: The model was generated using the synthetic skull scan data, and the surface model was changed to a solid model using software. Bilateral sagittal split ramus osteotomy was performed using the program, and 8 different types of fixation methods were evaluated. A vertical load of 10 N was applied to the occlusal surface of the first molar. Results: In the case of bicortical screws, von-Mises stress on the screws and screw hole and deflection of the lower central incisor were minimal in type 2 (inverted L pattern with 3 bicortical repositioning screws). In the case of plates, von-Mises stress was minimal in type 8 (fixation 5 mm above the inferior border of the mandible with 1 metal plate and 4 monocortical screws), and deflection of the lower central incisor was minimal in types 6 (fixation 5 mm below the superior border of the mandible with 1 metal plate and 4 monocortical screws) and 7 (fixation 12 mm below the superior border of the mandible with 1 metal plate and 4 monocortical screws). Conclusion: Types 2 and 6 fixation methods provide better stability than the others.

Electric Resistance Double Spot Welding Process of Dissimilar Metal Plates of Steel and Aluminum by Using Heating Dies (가열금형을 사용하는 강철과 알루미늄 이종금속판재의 전기저항 이중스폿용접)

  • Kim, T.H.;Sun, Xiaoguang;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.27 no.1
    • /
    • pp.37-47
    • /
    • 2018
  • In this paper, a double spot welding process, utilizing electric resistance heating dies, is suggested for the spot welding of dissimilar metal plates for drawing and concurrent spot welding. This double welding process has two heating methods for the fusion welding at the interfacial zone between steel and aluminum plates, such as heating method by thermal conduction of electric resistance by welding current induced to heating dies, and heating method by electric resistance between contacted surfaces of two plates by welding current induced to copper electrode. This double welding process has welding variables such as each current induced in heating dies and in copper electrode, outer diameters of heating dies, and edge shape of copper electrode. Experiments for current conditions in welding process should be demanded in order to get successful welding strength. It was known that the welding strength could be reached to the value demanded on industry fields under such welding conditions as heating dies of outer ring dia.12mm contacted on steel plate, as heating dies of outer ring dia. 14mm contacted on aluminum plate, and as copper electrode of dia. 6.0mm, and as 3 times continuous heating method by $1^{st}$ current of 11 kA(9cycle), $2^{nd}$ current 11 kA(60cycle), $3^{rd}$ current 7 kA(60cycle) applied in steel heating dies and copper electrodes, flat edge of copper electrode, for double spot welding process of dissimilar metal plates of steel and aluminum of 1.0 mm thickness.

Buckling behaviors of FG porous sandwich plates with metallic foam cores resting on elastic foundation

  • Abdelkader, Tamrabet;Belgacem, Mamen;Abderrahmane, Menasria;Abdelhakim, Bouhadra;Abdelouahed, Tounsi;Mofareh Hassan, Ghazwani;Ali, Alnujaie;S.R., Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.289-304
    • /
    • 2023
  • The main objective of this paper is to study the effect of porosity on the buckling behavior of thick functionally graded sandwich plate resting on various boundary conditions under different in-plane loads. The formulation is made for a newly developed sandwich plate using a functional gradient material based on a modified power law function of symmetric and asymmetric configuration. Four different porosity distribution are considered and varied in accordance with material propriety variation in the thickness direction of the face sheets of sandwich plate, metal foam also is considered in this study on the second model of sandwich which containing metal foam core and FGM face sheets. New quasi-3D high shear deformation theory is used here for this investigate; the present kinematic model introduces only six variables with stretching effect by adopting a new indeterminate integral variable in the displacement field. The stability equations are obtained by Hamilton's principle then solved by generalized solution. The effect of Pasternak and Winkler elastic foundations also including here. the present model validated with those found in the open literature, then the impact of different parameters: porosities index, foam cells distribution, boundary conditions, elastic foundation, power law index, ratio aspect, side-to-thickness ratio and different in-plane axial loads on the variation of the buckling behavior are demonstrated.

Free vibration of various types of FGP sandwich plates with variation in porosity distribution

  • Aicha Kablia;Rabia Benferhat;Tahar Hassaine Daouadji;Rabahi Abderezak
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • The use of functionally graded materials in applications involving severe thermal gradients is quickly gaining acceptance in the composite mechanics community, the aerospace and aircraft industry. In the present study, a refined sandwich plate model is applied to study the free vibration analysis of porous functionally graded material (FGM) sandwich plates with various distribution rate of porosity. Two types of common FG sandwich plates are considered. The first sandwich plate is composed of two FG material (FGM) face sheets and a homogeneous ceramic or metal core. The second one consists of two homogeneous fully metal and ceramic face sheets at the top and bottom, respectively, and a FGM core. The displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the thickness of the sandwich plate. The number of unknowns and equations of motion of the present theory is reduced and hence makes them simple to use. In the analysis, the equation of motion for simply supported sandwich plates is obtained using Hamilton's principle. In order to present the effect of the variation of the porosity distribution on the dynamic behavior of the FGM sandwich plates, new mixtures are proposed which take into account different rate of porosity distribution between the ceramic and the metal. The present method is applicable to study the dynamic behavior of FGM plates and sandwich plates. The frequencies of two kinds of FGM sandwich structures are analyzed and discussed. Several numerical results have been compared with the ones available in the literature.

Wave Diffractions by Submerged Flat Plate in oblique Waves (경사파중 수중평판에 의한 파랑변형)

  • Cho, I.H.;Kim, H.J.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.53-61
    • /
    • 1996
  • This paper describes the effect of wave control using submerged flat plate by the numerical calculation and the hydraulic model test. The boundary element method is used to develop a numerical solution for the flow field caused by monochromatic oblique waves incident upon an infinitely long, sumerged flat plate situated in arbitrary water depth. The effect of wave blocking is examined according to the change of length, submerged depth of flat plate and incident angles. Numerical results show that longer length, shallower submergence of flat plate and larger incident angles enhance the effect of wave blocking. To validate numerical analysis method, hydraulic model test was conducted in 2-D wave flume with 60 cm metal sheet. Reflected waves are extracted from water surface elevation in front of the location of a submerged plate by least square method with 3 wave gages. From comparing experimental results with numerical results, efficiency of numerical analysis method by this study could be confirmed well within wide ranges of wave frequencies.

  • PDF

Evaluation of Fatigue Behavior for Laser Welded High Strength Steel Sheets (SPFC590) (고장력 강판(SPFC590)의 레이저 용접부 피로거동 평가)

  • Heo, Cheol;Kwon, Jong-Wan;Cho, Hyun-Deog;Choi, Sung-Jong;Chung, Woo-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.53-64
    • /
    • 2012
  • Deep and narrow welds can be produced by laser welding at high welding speeds with a narrow heat-affected zone (HAZ) and little distortion of the workpiece. This study aims to evaluate the usefulness of laser welding at automobile component manufacture. Microstructure observation, hardness test, tensile test and fatigue life test are performed by using the fiber laser welded SPFC590 steel sheets which is used widely in the manufacture of automotive seat frame. Three kinds of specimens are only a SPFC590 steel plate, quasi-butt joint plate and lap joint plate by laser welding. The following results that will be helpful to understand the static strength, fatigue crack initiation and growth mechanism were obtained. (1) The tensile strength of quasi butt joint specimens nearly equal to base metal specimens, but lap joint specimens fractured in shear area of weld metal. (2) The fatigue strength of quasi-butt joint specimen was approximately 8 percent lower than that of the base metal specimens. Furthermore, the lap joint specimens were less than 86 percent of the base metal specimens. (3) The lap joint fatigue specimens fractured at shear area in high level stress amplitude, while fractured at normal area in low level stress amplitude. From these results, the applicability of the laser welding to the automobile component is discussed.

The Effects of Start Block and Arc Length on Melt Through and Unmelted Zone at Welding Start in High Speed Plasma Arc Welding of Thin Plate (박판 고속 플라즈마 맞대기 용접에서 용접 시작부의 용락과 미용융에 미치는 시작블록과 아크길이의 영향)

  • Chu, Yong-Su;Hong, Seong-Joon;Jung, Jae-Pil;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.26 no.2
    • /
    • pp.92-97
    • /
    • 2008
  • In welding of thin plate, some defects such as melt through and unmelted zone occur easily at welding start, however there is a limited study on those problems. Therefore the effects of start block and arc length on melt through and unmelted zone at start were investigated in this study. When start block height was lower than base metal, there was melt through at start. And when the height was even with base metal, no unmelted zone existed. Unmelted zone was increased as start block height increased from 0mm to 0.5mm. However unmelted zone was not much changed as the height increasing from 0.5mm to 1.0mm. When gap existed between start block and base metal, melt through occurred. However, unmelted zone was increased as the contact force of start block on base metal was increased from 0kgf to 7.5kgf. And when arc length was decreased from 3.8mm to 3.0mm, unmelted zone was decreased. It was concluded that the optimum condition to prevent melt through and to minimize unmelted zone would be with start block height 0.25mm, contact force 3.0kgf, and arc length 3.4mm. This optimum condition was applied to the mass production line and resulted in satisfied outcome.