• Title/Summary/Keyword: Metal partitioning

Search Result 40, Processing Time 0.031 seconds

Enhanced Partitioning of Proteins in Metal-Affinity Aqueous Two-Phase Systems (금속 친화성 액 이상분계 시스템에서 단백질의 분배 향상)

  • Chung, Bong-Hyun;Park, Young-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.336-341
    • /
    • 1993
  • In metal-affinify aqueous two-phase systems, protein partitioning is affected by a variety of parameters such as pH, the number of surface-accessible histidines, and the amount and partition coefficient of metallated polythylene glyco(PEG) ligand. To enhance partitioning of proteins with surface-accessible histidines, we have synthesized and used a (Cu(II)-ininodiacetic acid)$_2$-PEG20,000($Cu(II)_2IDA_2$-PEG20,000) as well as Cu(II)IDA-PEG5,000 as an affinity ligand. The partition coefficient of $Cu(II)_2-IDA_2$-PEG20,000 in a PEG5,000/dextran two-phase system was 30.1, which corresponded to a 3.8-fold increase over that of Cu(II)IDA-PEG5,000. The partitioning experiments were performed on four proteins, horse cytochrome c, S. cerevisiae cytochrome c, horse myoglobin, and sheep myoglobin. Partitioning of proteins which convey surface-accessible histidines was enhanced dramatically by the addition of $Cu(II)_2IDA_2$-PEG20,000 ligand. These results demonstrate that enhanced partitioning of metal-binding proteins in an aqueous two -phase system can by achieved by using an appropriate metallated PEG ligand.

  • PDF

Phosphoprotein Partitioning in Metal-Affinity Aqueous Two-Phase Systems and Prediction of Partitioning Behavior (금속 친화성 액 이상분계 시스템에서 Phsphoprotein분배 및 분배예측)

  • 정봉현
    • KSBB Journal
    • /
    • v.9 no.3
    • /
    • pp.279-286
    • /
    • 1994
  • A mathematical model has been derived and used to describe phosphoprotein partitioning in Fe(III) IDA-PEG/dextran two-phase systems. This model includes the inhibitory effects of hydrogen and hydroxyl ion concentrations on protein partitioning. For aqueous two-phase partitioning experiments, the Al and A2 subcomponents of ovalbumin carrying two and one surface phosphoryl group(s) were purified using an immobilized metal ion affinity chromatography (IMAC). The ratio of partition coefficients in the presence and absence of Fe(III)IDA-PEG, K/Ko, increased in the pH range of 3.0 to 5.0 due to deprotonation of the second oxygen of the phosphoryl group, and above pH 5.0 declined steeply by the inhibitory binding of hydroxyl ions to the metal ion. This partitioning behavior was well described by the mathematical model. The binding constants for formation of the complex between the phosphoryl group and the Fe(III)IDA-PEG were found to be $6.1{\times}10^3M^{-1} and 2.3{\times}10^4M^{-1}$ in the top and bottom phases, respectively. These values are 3-5 times those for interaction of Cu(II)IDA-PEG with a single surface-accessible histidine.

  • PDF

A Study on Behavior of Heavy Metals during Waste Incineration (폐기물 소각시 중금속 성분의 거동에 관한 연구)

  • 박용이;허철구
    • Journal of Environmental Science International
    • /
    • v.5 no.6
    • /
    • pp.785-799
    • /
    • 1996
  • The incineration tests of mixed industrial wastes using the stoker type incinerator are carried out to investigate the partitioning characteristics of heavy metals during incineration. The results obtained from this study are as follow. The partitioning characteristics of heavy metals throughout this incinerator are found that, at given condition of $700^{\circ}C$, the elements with the relatively high boiling point such as Cr, Cu and Pb are partitioned into a bottom ash, a fry ash captured tv cyclone, and a flue gas stream, 67~88%, 2~19% and 6~16% of initial amount entering the incinerator, respectively, but the Cd and Hg of 75~81% is vaporized into the flue gas. It appears that the partitioning characteristics according to the particle size of ash is different between the bottom ash and the fly ash. For bottom ash, the fraction of partitioning into 75${\mu}{\textrm}{m}$ oversized particles is reatively high. For fly ash, the characteristics of distributions with the particle size can not be clearly shown.

  • PDF

Behavior of Radioactive Metal Surrogates Under Various Waste Combustion Conditions

  • Yang, Hee-Chul;Lee, Jae-Hee;Kim, Jung-Guk;Yoo, Jae-Hyung;Kim, Joo-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.80-89
    • /
    • 2002
  • A laboratory investigation of the behavior of radioactive metals under the various waste combustion atmospheres was conducted to predict the parameters that influence their partitioning behavior during waste incineration. Neodymium, samarium, cerium, gadolinium, cesium and cobalt were used as non-radioactive surrogate metals that are representative of uranium, plutonium, americium, curium, radioactive cesium, and radioactive cobalt, respectively. Except for cesium, all of the investigated surrogate metal compounds converted into each of their stable oxides at medium temperatures from 400 to 90$0^{\circ}C$, under oxygen- deficient and oxygen-sufficient atmospheres (0.001-atm and 0.21-atm $O_2$). At high temperatures above 1,40$0^{\circ}C$, cerium, neodymium and samarium in the form of their oxides started to vaporize but the vaporization rates were very slow up to 150$0^{\circ}C$ . Inorganic chlorine (NaCl) as well as organic chlorine (PVC) did not impact the volatility of investigated Nd$_2$O$_3$, CoO and Cs$_2$O. The results of laboratory investigations suggested that the combustion chamber operating parameters affecting the entrainment of particulate and filtration equipment operating parameters affecting particle collection efficiency be the governing parameters of alpha radionuclides partitioning during waste incineration.

Aging Effects On Partitioning Coefficients of Cd, Cu, and Zn in Metal-spiked Soils (토양에 유입된 카드뮴, 구리, 아연의 시간에 따른 분배 계수의 변화)

  • Kim, Bo-Jeong;McBride, Murray B.
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.47-56
    • /
    • 2008
  • Temporal changes of metal solubility have been repeatedly observed in soils equilibrated with metal salt solutions. This phenomenon is known as aging, yet factors that affect the degree of metal aging remain largely unexamined. In this study, we compared the extent of aging on metal partitioning depending on soil, metal, and metal loading. Five soils spiked with four levels of Cd (2.5-20 mg ${kg}^{-1}$), Cu, and Zn (50-400 mg ${kg}^{-1}$) salt solutions were aged in the laboratory up to 1 year. The partitioning coefficient ($K_d$) of each metal was calculated from the ratio of total to dissolved metal concentration in samples collected at times ranging from 1 day to 1 year. The highest $K_d$ values for Cd, Cu and Zn were recorded in a Histosol, Andisol, and fine-textured Alfisol, respectively, whereas the lowest $K_d$ was recorded for an Oxisol and coarsetextured Alfisol. For all soils, a pattern of increasing Kd with aging was evident for Cd and Zn, but not Cu. Rapid Cu sorption was limited when dissolved organic matter was high in soils. In highly-retentive soils, $K_d$ values seemed to be insensitive to metal loading, although a longer period was required for the higher metal loadings to reach the same degree of metal aging as the lower loadings. In soils with low sorption capacity, the $K_d$ values were determined more by metal loading than by aging. Therefore, marked differences can be expected in the degree of metal aging in spiked soils by the soil type, metal and amount of metal added.

PARTITIONING RATIO OF DEPLETED URANIUM DURING A MELT DECONTAMINATION BY ARC MELTING

  • Min, Byeong-Yeon;Choi, Wang-Kyu;Oh, Won-Zin;Jung, Chong-Hun
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.497-504
    • /
    • 2008
  • In a study of the optimum operational condition for a melting decontamination, the effects of the basicity, slag type and slag composition on the distribution of depleted uranium were investigated for radioactively contaminated metallic wastes of iron-based metals such as stainless steel (SUS 304L) in a direct current graphite arc furnace. Most of the depleted uranium was easily moved into the slag from the radioactive metal waste. The partitioning ratio of the depleted uranium was influenced by the amount of added slag former and the slag basicity. The composition of the slag former used to capture contaminants such as depleted uranium during the melt decontamination process generally consists of silica ($SiO_2$), calcium oxide (CaO) and aluminum oxide ($Al_2O_3$). Furthermore, calcium fluoride ($CaF_2$), magnesium oxide (MgO), and ferric oxide ($Fe_2O_3$) were added to increase the slag fluidity and oxidative potential. The partitioning ratio of the depleted uranium was increased as the amount of slag former was increased. Up to 97% of the depleted uranium was captured between the ingot phase and the slag phase. The partitioning ratio of the uranium was considerably dependent on the basicity and composition of the slag. The optimum condition for the removal of the depleted uranium was a basicity level of about 1.5. The partitioning ratio of uranium was high, exceeding $5.5{\times}10^3$. The slag formers containing calcium fluoride ($CaF_2$) and a high amount of silica proved to be more effective for a melt decontamination of stainless steel wastes contaminated with depleted uranium.

Three Dimensional Layering Algorithm for 3-D Metal Printing Using 5-axis (3 차원 금속 프린팅을 위한 다중 3 차원 적층 알고리듬(3DL))

  • Ryu, Sua;Jee, Haeseong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.881-886
    • /
    • 2014
  • The purpose of three-dimensional (3-D) metal printing using 5-axis is to deposit metal powder by changing the orientation of the deposited structure to be built for the overhang or undercut feature on part geometry. This requires a complicated preprocess functionality of providing three dimensionally sliced layers to cover the required part geometry. This study addresses the overhang/undercut problem in 3-D metal printing and discusses a possible solution of providing 3-D layers to be built using the DMT(R) machine.

Distribution of Phytoavailable Heavy Metals in the Korean Agricultural Soils Affected by the Abandoned Mining Sites and Soil Properties Influencing on the Phytoavailable Metal Pools

  • Lim, Ga-Hee;Kim, Kye-Hoon;Seo, Byoung-Hwan;Kim, Kwon-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.191-198
    • /
    • 2014
  • Absorption and accumulation of heavy metals in plants were determined by phytoavailable contents rather than total contents of heavy metals. Therefore, phytoavailability-based management protocol should be prepared for safe food crop production in contaminated agricultural lands. This study was conducted to understand the distribution and phytoavailability of heavy metal in the Korean agricultural soils affected by abandoned mining sites along with investigation of soil properties (soil pH, OM, DOC, clay content, Al/Fe/Mn content) influencing on the metal phytoavailability. For this, 142 agricultural soils located nearby 39 abandoned mining sites distributed in five province in Korea, were analyzed. Among the four different heavy metals, cadmium (Cd) and zinc (Zn) appeared to exist in more phytoavailable form than cupper (Cu) and lead (Pb). Soil pH was the main factor governing phytoavailable Cd, Pb, and Zn showing positive relationship with partitioning coefficients of the corresponding metals; Cd (r = 0.66, P < 0.001), Pb (r = 0.70, P < 0.001), and Zn (r = 0.62, P < 0.001). This implied higher phytoavailability of the corresponding metals with higher soil pH. In contrast, phytoavailability of Cu (r = 0.41, p < 0.01) was only negatively related with soil DOC (dissolved organic carbon).

Efficient and Low-Cost Metal Revision Techniques for Post Silicon Repair

  • Lee, Sungchul;Shin, Hyunchul
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.322-330
    • /
    • 2014
  • New effective techniques to repair "small" design errors in integrated circuits are presented. As semiconductor chip complexity increases and the design period becomes tight, errors frequently remain in a fabricated chip making revisions required. Full mask revision significantly increases the cost and time-to-market. However, since many "small" errors can be repaired by modifying several connections among the circuit blocks and spare cells, errors can frequently be repaired by revising metal layers. Metal only revision takes significantly less time and involves less cost when compared to full mask revision, since mask revision costs multi-million dollars while metal revision costs tens of thousand dollars. In our research, new techniques are developed to further reduce the number of metal layers to be revised. Specifically, we partition the circuit blocks with higher error probabilities and extend the terminals of the signals crossing the partition boundaries to the preselected metal repair layers. Our partitioning and pin extension to repair layers can significantly improve the repairability by revising only the metal repair layers. Since pin extension may increase delay slightly, this method can be used for non-timing-critical parts of circuits. Experimental results by using academia and industrial circuits show that the revision of the two metal layers can repair many "small" errors at low-cost and with short revision time. On the average, when 11.64% of the spare cell area and 24.72% of the extended pins are added to the original circuits, 83.74% of the single errors (and 72.22% of the double errors) can be corrected by using two metal revision. We also suggest methods to use our repair techniques with normal commercial vender tools.