• Title/Summary/Keyword: Metal matrix composite (MMC)

Search Result 52, Processing Time 0.022 seconds

Selective Laser Melting of Metal Matrix Composites: A Review of Materials and Process Design (레이저로 적층 제조한 금속 기지재 복합재료의 설계 및 제조 연구동향)

  • Kim, Min-Kyeom;Kim, Taehwan;Kim, Ju-won;Kim, Dongwon;Fang, Yongjian;No, Jonghwan;Suhr, Jonghwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.212-225
    • /
    • 2021
  • Metal matrix composites (MMCs) were widely used in various industries, due to the excellent properties: high strength, stiffness, wear resistance, hardness, thermal conductivity, electrical conductivity, etc. With additive manufacturing (AM) technology rapidly developed, AM MMCs have been actively investigated thanks to the cost- and time-saving manufacturing. However, several issues still need to be addressed before fabricating AM MMCs. Here, several types of MMCs were introduced and MMCs' design methods to tackle the issues were suggested in a powder bed fusion (PBF) technique. The paper could come up with a guideline for the material and process design of MMCs in the PBF technique.

A Study on Fatigue Life and Fatigue Crack Propagation Behavior of MMC (MMC의 피로수명과 피로균열전파거동에 관한 연구)

  • 허선철;박원조;최용범
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.127-133
    • /
    • 2002
  • The objective of this study is to investigate fatigue life and fatigue crack propagation behavior The experiment of fatigue life for MMC have been carried out for the stress ratio R=0.1 at 20Hz. Fatigue lift limit of AC4CH alloy is about 70 ㎫ and Fatigue limit of MMC has been increment to 120 ㎫, therefore, fatigue limits of MMC is about 71 % higher than that of AC4CH alloy Crack propagation tests on half-size CT specimen of thickness 12.5mm were conducted by using sinusoidal waveform. The crack length was monitored by compliance method. Test conditions were at 0.1 and 0.05 of load ratio at 10Hz of loading frequency and test load was 2.3kN. The effects of stress ratio on the fatigue crack propagation behavior for MMC was discussed within the Paris law. As the results of this study, Fatigue crack propagation increased with increasing the load ratio.

A Study on Fatigue Damage Accumulation of MMC using Ultrasonic Wave and Acoustic Emission (초음파와 AE기법을 이용한 금속복합재료의 피로손상진전 평가)

  • 이진경;이준현
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.1-10
    • /
    • 2000
  • SiC particulate reinforced metal matrix composites(MMCs) are emerging as candidate materials for the automobile and aerospace industries due to their significant increase in elastic modulus and strength compared to conventional metallic materials. However, in order to make successful application of MMCs, it is very important to understand micro-failure mechanism under cyclic loading because failure mechanism of MMC is dominated by accumulation of micro-failure due to applied loading. In this study, ultrasonic Lamb wave and acoustic emission(AE) have been used to monitor microscopic damage accumulation under cyclic loading for SiC particulate reinforced metal matrix composite(SiCp/A356). It was found that the change in velocity and attenuation of ultrasonic Lamb wave due to the increase of loading cycles could be characterized by three different stages corresponding to the microscopic fracture processes. The characteristic of AE signal at each stage was analyzed and discussed by comparing with the change of ultrasonic characteristic in MMCs.

  • PDF

Wear Behavior of Saffil/SiCp reinforced Metal Matrix Composites at the room temperature (Saffil/SiCp을 이용한 금속 복합재료의 상온 마모 거동)

  • 조종인;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.46-49
    • /
    • 2003
  • Aluminum based metal matrix composites(MMCs) are well known for their high specific strength, stiffness and hardness. They are gaining further importance because of their high wear resistance. In this study, Al/Saffil-20%, Al/Saffil-5%/Al2O3(particle type)-15% and Al/Saffil-5%/SiC(particle type)-15% hybird MMCs' wear behavior were characterized by the pin-on-disk test under various normal load The superior wear resistance was exhibited at Al/Saffil-5%/SiC(particle type)-15% MMCs. And this MMCs' predominant wear mechanism is subsurface cracking in the low load wear regime. Others(Al/Saffil-20%, Al/Saffil-5%/Al2O3(particle type)-15%) showed the similar wear resistance with each other at the same test condition. In the low load & room temperature condition, the wear resistance was improved due to the high hardness of the ceramic reinforcements. As the test load increased, the wear properties were governed by the wear properties of matrix.

  • PDF

A Study of Threshold stress during High Temperature Creep of $\textrm{BN}_f$/Al-5, wt% Mg Metal Matrix Composite (BN 입자 강화 Al-5wt% Mg 기지 복합재료의 고온 크립 변형에서의 임계응력 해석)

  • Song, M.H.;Kwon, H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.187-191
    • /
    • 2000
  • High temperature creep behaviour of Al-5 wt% Mg alloy reinforced with 7.5% BN flakes was studied. The composite specimens showed two main creep characteristics : (1) the value of the apparent stress exponent of the composite was high and varied with applied stress (2) the apparent activation energy for creep was much larger than that for self-diffusion in aluminum The true stress exponent of the composite was set equal to 5. Temperature dependence of the threshold stress of the composite was very strong. Which could not be rationalized by allowing for the temperature dependence of the elastic modulus change. AIN particles which were incorporated into the Al matrix during fabrication of the composite by the PRIMEXTM method were found to be effective barriers to dislocation motion and to give rise the threshold stress during creep of the composite

  • PDF

A Theoretical Study on Quantitative Prediction and Evaluation of Thermal Residual Stresses in Metal Matrix Composite (Case 1 : Two-Dimensional In-Plane Fiber Distribution) (금속기지 복합재료의 제조 및 성형시에 발생하는 열적잔류응력의 정량적 평가 및 예측에 관한 이론적 연구 (제 1보 : 강화재가 2차원 평면상태로 분포하는 경우))

  • Lee, Joon-Hyun;Son, Bong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.2
    • /
    • pp.89-99
    • /
    • 1997
  • Although discontinuously reinforced metal matrix composite(MMC) is one of the most promising materials for applications of aerospace, automotive industries, the thermal residual stresses developed in the MMC due to the mismatch in coefficients of thermal expansion between the matrix and the fiber under a temperature change has been pointed out as one of the serious problem in practical applications. There are very limited nondestructive techniques to measure the residual stress of composite materials. However, many difficulties have been reported in their applications. Therefore it is important to establish analytical model to evaluate the thermal residual stress of MMC for practical engineering application. In this study, an elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two-dimensional in-plane fiber misorientation. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. This model is more general than past models to investigate the effect of parameters which might influence thermal residual stress in composites. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for in-plane fiber misorientation. Fiber volume fraction, aspect ratio, and distribution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distribution type for in-plane misorientation.

  • PDF

Influence of Applied Pressure on the Microstructure of NCG Reinforced MMC Fabricated by Squeeze Casting (용탕단조법으로 제조된 니켈코팅흑연화이버 강화 금속복합재료의 미세조직에 대한 가압력의 영향)

  • Ryu, Yong-Mun;Yoon, Eui-Park
    • Journal of Korea Foundry Society
    • /
    • v.19 no.1
    • /
    • pp.66-70
    • /
    • 1999
  • In order to increase the wettability between ceramic fiber and metal matrix, ceramic fibers are generally coated with metal. In this paper, we examined how the nickel layers coated on continuous graphite fiber to increase the wettability are affected with variation applied pressure. In order to examine the behavior of nickel layer with variation of applied pressure, microstructure and nickel mapping of composites were investigated with SEM, and tensile properties of the composite were tested with UTM. As the applied pressure increases, nickel layers were resolved into the aluminum matrix and ultimate tensile strength of the composite decreased.

  • PDF

A Study on the Characterisitcs of Electircal Discharge Machining (Sic/A1 복합재료의 방전가공 특성에 관한 연구)

  • 우정윤;왕덕현;김원일;이규창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.3-7
    • /
    • 1996
  • Metal Matrix Composite(MMC) material of 30% SiC particulate based on A1 matrix was machined by drilling and Electrical Discharge Machining (EDM) processes. When drilling process was executed, surface fracture due to brittle property near the bottom was found. It was also found the possiblity of difficult shape of EDM process for MMC material, but few the research about basic EDM characteristics. Material Removal Rate(MRR) was examined for different conditions and the surface morphology was evaluated by roughness values and Scanning Electron Microscopy(SEM) research. The higher the current is, the more MRR was obtained but the higher MRR was showed around 0.45 duty factor. The average roughness of EDMed surface was slightly changed with increased pulse current and increases with duty factor. The SEM photographs of EDMed surface showed recast region after melting.

  • PDF

Effect of Cutting Tool Materials on Surface Roughness and Cutting Forces in Machining of $Al-Si_3N_4$ Composite Produced by Powder Metallurgy

  • Ozcatalbas, Yusuf;Bahceci, Ersin;Turker, Mehmet
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1052-1053
    • /
    • 2006
  • Aluminum-based composites reinforced with various amounts of $\alpha-Si_3N_4$ were produced by powder metallurgy (P/M). The machinability properties of $MMC_s$ were determined by means of cutting forces and surface roughness. Machining tests were carried out by using PCD and K10 tools. Increasing of $Si_3N_4$ volume fraction in the matrix resulted in a decrease of the surface roughness and turning forces. PCD cutting tools showed better cutting performance than K10 tools.

  • PDF

Evaluation on Thermal Shock Damage of Smart Composite using Nondestructive Technique (비파괴 기법을 이용한 스마트 복합재료의 열충격손상평가)

  • Lee, Jin-Kyung;Park, Young-Chul;Lee, Kyu-Chang;Lee, Joon-Hyun
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.37-42
    • /
    • 2007
  • Tensile residual stress is occurred by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). TiNi alloy fiber was used to solve the problem of the tensile residual stress as the reinforced material. TiNi alloy fiber improves the tensile strength of composite with occurring of compressive residual stress in the matrix by its shape memory effect. A hot press method was used to create the optimal fabrication condition for a Shape Memory Alloy(SMA) composite. The bonding effect of the matrix and the reinforcement within the SMA composite by the hot press method was strengthened by cold rolling. In addition, acoustic emission technique was used to quantify the microscopic damage behavior of cold rolled TiNi/A16061 shape memory alloy composite at low temperature. The damage degree for the specimen that underwent thermal shock cycles was also discussed.