• Title/Summary/Keyword: Metal leaching

Search Result 352, Processing Time 0.029 seconds

폐광산 폐석에 의한 환경오염 저감기술 개발 기초 연구

  • 고주인;지상우;이현석;전용원;강희태;김선준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.386-390
    • /
    • 2003
  • To evaluate the potential capacity of mine wastes in the production of heavy metal containing acid water, samples from depths of 0, 30 and 60cm were collected and analyzed. The waste from surface showed the lowest pH which indicates the oxidation of wastes and the capacity of contamination of the area around the waste file. And the lower pH values of leachate of the wastes through the leaching tests with pH controlled water(3, 4, 5) may indicate that minerals producing the acidity still exist. Reduction of sulfur contents in wastes after the leaching test well fit to the increased contents of iron oxide.

  • PDF

Recovery of Metallurgical Silicon from Slurry Waste (Wafer Sawing 공정의 폐슬러리로부터 금속 실리콘 회수에 관한 연구)

  • Kim, Jong-Young;Kim, Ung-Soo;Hwang, Kwang-Taek;Cho, Woo-Seok;Kim, Kyung-Ja
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.189-194
    • /
    • 2011
  • Metallurgical grade silicon was recovered from slurry waste for ingot sawing process by acid leaching and thermal treatment. SiC abrasive was removed by gravity concentration and centrifugation. Metal impurities were removed by the acid leaching using HF/HCl. The remaining SiC was separated by the thermal treatment at $1600^{\circ}C$ in an inert atmosphere by the difference in melting points. The purity of the obtained silicon was found to be around 99.7%.

A Study on the Leachability of Heavy Metals from Steel Mill Slags (제철소 Slag의 중금속 용출특성에 관한 연구)

  • 유재형;이한철
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.89-96
    • /
    • 1992
  • In this study , we have investigated leaching characteristics of heavy metals and alkalinity centering around steel mill slags by several extraction methods, for the purpose of risk assessment that exert influence on environment and offer of the foundation data of reuse by slags. Korean standard method, U.S.EPA Extraction Procedure, alkalinity extraction test and 9 step sequential fractionation experiment by Miller et al. were carried out for investigating teachability of steel mill slags. As a result of this experiment, heavy metals were little detected and it was considered that alkalinity does not exert a bad effect around environment in slabs with large particle size. By the result of 9 step fractionation experiment, heavy metal contents in slags were not plentiful, in addition, even comparatively plentiful contended heavy metals, for the most part, were likely to detained or bonded in silica matrix. Therefore, in case of slags with large particle size, it seems that teachability of heavy metals were next to impossible that is existed as a safety condition.

  • PDF

The Effects of Kinetics on the Leaching Behavior of Heavy Metals in Tailings-Water Interaction (광미-물 상호반응에서 반응시간이 중금속 용출에 미치는 영향)

  • Kang Min-Ju;Lee Pyeong-Koo;Kim Sang-Yeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.23-36
    • /
    • 2006
  • Experimental leaching of tailings was performed as a function of times (1, 2, 4, 7, 14, 21 and 30 days) in the laboratory using reaction solutions equilibrated to three different pH set-points (pHs 1,3 and 5). The initial pHs of 5 and 3 stabilized at either 4.6-6.1 or 2.8-3.5 in 2 days and decrease gradually with time afterwards. The results of the leaching tests indicate that the significant increase in the sulfate concentrations and in acidity after 7 days of leaching results from the oxidation of sulfide minerals. There were no significant variations in the extractable Pb found in the leach solutions of pH 5 and 3 within the reaction time (1-30 days), while Zn, Cd and Cu concentrations tend to significantly increase with time. In tailings leaching at an initial pH=1, two trends were observed: i) The 'Zn-type' (Zn, Cd and Cu), with increasing concentrations between days 1 and 30, corresponding to the expected trend when continuous dissolution is the dominant process, ii) the 'Pb-type' (Pb), with decreasing concentrations over time, suggesting rapid dissolution of a Pb source followed by the precipitation of 'anglesite' in relation to the large increase in dissolved sulfates. The high sulfate concentrations were coupled with high concentrations of released Fe, Zn and Cd. Release of Zn and Cd and acidity from these leaching experiments can potentially pose adverse impact to surface and groundwater qualities in the surrounding environment. The kinetic problems could be the important factor which leads to increasing concentrations of trace metals in the runoff water.

Leaching of Copper and Other Metal Impurities from a Si-Sludge Using Waste Copper Nitrate Solution (실리콘 슬러지로부터 폐질산구리용액을 이용한 구리 및 금속불순물의 침출)

  • Jun, Minji;Srivastava, Rajiv Ranjan;Lee, Jae-chun;Jeong, Jinki
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.11-19
    • /
    • 2016
  • A fundamental study to recycle a Si-Sludge and waste copper nitrate solution acid solution generated by domestic electronic industries was carried out. The waste copper nitrate solution was used as the lixiviant to leach the metals like Cu, Ca, Fe, etc. from the sludge leaving Si in the residues. The effect of reaction temperature, time and pup density on the metals leaching from the sludge was investigated. To enhance the extractability of Fe, the effect of HCl, $HNO_3$ and $H_2O_2$ introduced additionally during the leaching was also examined. Considering the leaching efficiency of Fe along with Cu, the leaching conditions comprising of 200 ~ 225 g/L pulp density and $90^{\circ}C$ temperature for 30 min were optimized. Under this condition, 98.27 ~ 99.17% Cu could be dissolved in the leach liquor with the obtained purity of Si in the residues as 98.69 ~ 98.86 %. The study revealed that the leaching of Cu contained in the Si-Sludge with the waste copper nitrate solution is a plausible approach by which the obtained leach liquor can further be treated suitably to recover Cu as the high pure value-added products.

A Study on the Prior Leaching and Recovery of Lithium from the Spent LiFePO4 Cathode Powder Using Strong Organic Acid (강유기산을 이용한 폐LiFePO4 양극분말로부터 리튬의 선침출에 대한 연구)

  • Dae-Weon Kim;Soo-Hyun Ban;Hee-Seon Kim;Jun-Mo Ahn
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.105-112
    • /
    • 2024
  • Globally, the demand for electric vehicles has surged due to greenhouse gas regulations related to climate change, leading to an increase in the production of used batteries as a consequence of the battery life issue. This study aims to selectively leach and recover valuable metal lithium from the cathode material of spent LFP (LiFePO4) batteries among lithium-ion batteries. Generally, the use of inorganic acids results in the emission of toxic gases or the generation of large quantities of wastewater, causing environmental issues. To address this, research is being conducted to leach lithium using organic acids and other leaching agents. In this study, selective leaching was performed using the organic acid methane sulfonic acid (MSA, CH3SO3H). Experiments were conducted to determine the optimal conditions for selectively leaching lithium by varying the MSA concentration, pulp density, and hydrogen peroxide dosage. The results of this study showed that lithium was leached at approximately 100%, while iron and phosphorus components were leached at about 1%, verifying the leaching efficiency and the leaching rates of the main components under different variables.

A Study on the Properties of Electric Arc-Furnace Steelmaking Dusts for Stabilization Processing (안정화 처리를 위한 전기로 제강분진의 물성)

  • 현종영;조동성
    • Resources Recycling
    • /
    • v.7 no.5
    • /
    • pp.13-18
    • /
    • 1998
  • This study was carried out to understand the properties of the E.A.F. steel-making dusts for stabilization processing. The properties are related to mincral composition, shape, particle size, magnetism, density, porosity and leaching characteristic. the dust particles, the size of which ranges from sub-micron to tens-micron, were mainly spherical like balls that were agglomerated each other: the large particles were generally Fe-rich and the small particles were spherical like balls that were agglomerated each other: the large particles were franklinite (ZnFe$_{2}O_{4}$), magnetite (Fe$_{3}O_{4}$) and zincite (ZnO) by XRD analysis. When the dusts were sieved by a wet process, the particle fraction over 200 mesh had 1.5 wt.% with magnetite and quartz. The particles in the size range of 200-500 mesh consisted of magnetite, franklinite. The 82 wt.% of the steel-making dusts were occupied by the particles finer than 500 mesh and contained franklinite and zincite as main mineralogical compositions. When the dusts of around 78% porosity compressed under the load of approximately 1 KPa, the porosity decreased to 68% and to 535 under around 13 KPa. When the E.A.F. dusts were leached according to the Korea standard leaching procedure on the waster, the heavy metals exceeding the leaching criteria were cadmium, lead and mercury.

  • PDF

Recovery and Separation of Nickel from the Spent Ni-Cd Batteries (폐 Ni-Cd전지로부터 Ni의 분리 및 회수에 관한 연구)

  • 김종화;남기열
    • Resources Recycling
    • /
    • v.9 no.2
    • /
    • pp.11-17
    • /
    • 2000
  • Consumption of nickel is continuously increasing and the wastes of secondary battery, ferrite and catalyst containing Ni are also generated periodically. Among those wastes, the aim of this research is the recovery of nickel from used Ni-Cd recharge battery. Battery consisted of Ni 24 wt%, Fe 30 wt% and Cd 18.5 wt%. Metal was recovered by solvent extraction after leaching. Cadmium was leached completely in 1N-HCl and Ni was recovered above 70%. 30 vol% MSP-8 separated Cd and Ni completely from acidic leaching solution. In addition $NH_4NO_3$ as one of ammonium salt type leachants showed an excellent leaching selectivity to Ni and Cd. Ni in leached solution was recovered completely by LIX-extractant and more than 70% of Cd in raffinate was by D2EHPA.

  • PDF

Study on Leaching Behavior for Recovery of Ga Metal from LED Scraps (LED 공정스크랩으로부터 Ga 회수를 위한 침출 거동 연구)

  • Park, Kyung-Soo;Swain, Basudev;Kang, Lee Seung;Lee, Chan Gi;Uhm, Sunghyun;Hong, Hyun Seon;Shim, Jong-Gil;Park, Jeung-Jin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.414-417
    • /
    • 2014
  • LED scraps consisting of highly crystalline GaN and their leaching behavior are comprehensively investigated for hydro-metallurgical recovery of rare metals. Highly stable GaN renders the leaching of the LED scraps extremely difficult in ordinary acidic and basic media. More favorable state can be obtained by way of high temperature solid-gas reaction of GaN-$Na_2CO_3$ powder mixture, ball-milled thoroughly at room temperature and subsequently oxidized under ambient air environment at $1000-1200^{\circ}C$ in a horizontal tube furnace, where GaN was effectively oxidized into gallium oxides. Stoichiometry analysis reveals that GaN is completely transformed into gallium oxides with Ga contents of ~73 wt%. Accordingly, the oxidized powder can be suitably leached to ~96% efficiency in a boiling 4 M HCl solution, experimentally confirming the feasibility of Ga recycling system development.

Solidification/stabilization of simulated cadmium-contaminated wastes with magnesium potassium phosphate cement

  • Su, Ying;Yang, Jianming;Liu, Debin;Zhen, Shucong;Lin, Naixi;Zhou, Yongxin
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.15-21
    • /
    • 2016
  • Magnesium potassium phosphate cement (MKPC) is an effective agent for solidification/stabilization (S/S) technology. To further explore the mechanism of the S/S by MKPC, two kinds of Cd including $Cd(NO_3)_2$ solution (L-Cd) and municipal solid waste incineration fly ash (MSWI FA) adsorbed Cd (S-Cd), were used to compare the effects of the form of heavy metal on S/S. The results showed that all the MKPC pastes had a high unconfined compressive strength (UCS) above 11 MPa. For L-Cd pastes, Cd leaching concentration increased with the increase of Cd content, and decreased with the increase of curing time. With the percentage of MSWI FA below 20%, S-Cd pastes exhibited similar Cd leaching concentrations as those of L-Cd pastes, while when the content of MSWI FA come up to 30%, the Cd leaching concentration increased significantly. To meet the standard GB5085.3-2007, the highest addition of S-Cd was 30% MSWI FA (6% Cd contained), with the Cd leaching concentration of 0.817 mg/L. The S/S of L-Cd is mainly due to chemical fixation, and the hydration compound of Cd was $NaCdPO_4$, while the S/S of S-Cd is due to physical encapsulation, which is dependent on the pore/crack size and porosity of the MKPC pastes.