• Title/Summary/Keyword: Metal industry

Search Result 1,140, Processing Time 0.031 seconds

Nonferrous Metal Industry of China and Production Trend in 2003 (중국의 주요 비철금속 기업과 2003년 생산동향)

  • Park Hong-Soo;Kim You-Dong
    • Economic and Environmental Geology
    • /
    • v.38 no.4 s.173
    • /
    • pp.411-419
    • /
    • 2005
  • The recent rapid economic growth of China has an increasing interest to Korea. China is plentiful of the natural mineral resources and has a huge territory with 1.3 billion people, also has a strong foundation in the mining industry as a mineral process and metallurgical technology. Such strong mining industry of China is attractive to Korea which is getting ready the North East Asia epoch. The growth of big mining groups as Gangseo (Jiangxi) Copper Corporation and Honam Juyawhageo (Hunan Zhuye Torch) Metal Co. Ltd. haul up the rapid economic growth in China.

Composition of the heat transportation system using metal hydride (수소저장합금을 이용한 열수송시스템 구성)

  • Sim, K.S.;Myoung, K.S.;Kim, J.W.;Han, S.D.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.1
    • /
    • pp.41-48
    • /
    • 1999
  • The heat transportation from a complex of industry to a rural area needs more efficient method because the distance between them is usually more than 10km. Conventional heat transportation using steam or hot water via pipe line has limits in transportation distance (about 3-5 km) because of the heat loss and frictional loss in the pipe line. Metal hydride can absorb or discharge hydrogen through exothermic and endothermic reaction. After releasing hydrogen from metal hydride with heatings by waste heat from industry we can transport this hydrogen to the rural area via pipe line. In the urban areas other metal hydride reacts with this hydrogen and produces heat for heating. Cool heat is also obtained if it is possible to use metal hydride with low reaction temperature. So metal hydride can be used as a media for transportation, storage of heat. Some problems of the heat transportation using metal hydrides, and the example of heat transportation system were discussed.

  • PDF

Abatement of Metal Ion Contents from Cotton Linter for the Manufacture of Regenerated Cellulose (방직용 재생섬유 제조를 위한 면 린터의 금속이온 함량 저감에 관한 연구)

  • Park, Hee Jeong;Son, Ha Neul;Choi, Jin Sung;Seo, Yung Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.6
    • /
    • pp.17-23
    • /
    • 2013
  • The reduction of metal ion from the cotton linter for the preparation of NMMO (N-methylmorpholine N-oxide)-based dissolving pulp was investigated. The NMMO-based dissolving pulp was usually used for the manufacture of high quality fabrics, and need to have high alpha cellulose content and high brightness. NMMO, which is environmentally friendly, and reusable after recovering process, is very sensitive to the metal ions such as Cu, Fe, Mg, and Cr. Electron beam, sulfuric acid, acetic acid, and ozone treatment before bleaching were used and the concentration changes of the metal ions were compared to that of EDTA, a chelating agent. It was found that both acid treatments (sulfuric and acetic acid) were very effective and comparable to EDTA treatment at the same dosage in metal ion reduction, but electron beam and ozone treatment were not. The sulfuric acid treatment turned out to be effective in metal ion reduction, and most inexpensive.

Standardization of Rare Earth Elements in ISO TC 298 and Korea's Standardization Strategy (ISO TC 298에서의 희토류 분야 표준화 현황과 우리나라의 전략 및 과제)

  • Eom, Nu Si A;Abbas, Sardar Farhat;Aneeq, Haq Muhammad;Zarar, Rasheed Mohammad;Lee, Mi Hye;Kim, Bum Sung;Kim, Taek-Soo;Lee, Bin
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.251-257
    • /
    • 2019
  • Since the ISO decided to deal with rare-earth elements at the $298^{th}$ Technical Committee (TC) in 2015, Korea has participated in four plenary meetings and proposed four standards as of June 2019. The status of ISO TC 298, the standards covered by the TC, and the standardization strategies of Korea are summarized. Korean delegations are actively engaged in WG2, which deals with recycling, proposing four standards for fostering the rare-earth recycling industry. However, the participation of domestic experts is still low compared with the increase in the number of working groups and the number of standards in TC 298. The aim of this article is to summarize the current status of ISO international standards related to rare-earth elements, to encourage relevant experts to participate in standardization, and to develop international standards that accurately reflect the realities of the industry.

Japanese mold technology revolutionizing the mold industry (금형 산업을 변혁하는 일본의 금형 기술)

  • Jeong-Won Lee;Yong-Dae Kim;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.21-27
    • /
    • 2023
  • The mold industry in Japan, an advanced country in the mold industry, is also at a point of great change. The main causes are the Ukraine crisis and the collapse of the global supply chain (parts supply chain) caused by COVID-19. In addition, the prices of overseas products are rising sharply due to rapid exchange rate fluctuations (decrease in the value of the yen). Until now, Japan's monotsukuri industry has been actively pursuing overseas expansion, riding the trend of globalization. However, the trend began to rapidly reverse, and now the monotsukuri industry that had expanded overseas is showing a tendency to return to Japan. Another factor of change is the change in the automobile industry, which is the most demanded product in the mold industry. As the automobile industry evolves from gasoline cars to electric cars, the number of parts that make up a car will drastically decrease. This trend is expected to increase the demand for small-scale production of a variety of products in the mold industry, and furthermore, it is expected that short delivery times will be required in parts development. As in Korea, the production population working in the mold industry is rapidly decreasing in Japan as well. Even if you add up the total population working in manufacturing in Japan, it only accounts for about 15%. Even in Japan, it is judged that it will be difficult to sustain the monotsukuri industry with this small production population. Therefore, since improvement in production efficiency cannot be expected with the same manual dexterity as before, the mold industry is also demanding the development of mold technology at a different level than before to increase productivity. In this paper, I would like to introduce new Japanese mold technology collected through attending the Intermold exhibition. This is an example of applying a dedicated pin (Gastos) to a mold to prevent an increase in internal pressure during plastic injection molding, and a deep drawing press molding technology with an inherent hydraulic function.

Evaluation of Static Strength on Ceramic /Metal Bonded Joints Considering Stress Singularity (응력특이성을 고려한 세라믹/금속 접합재의 정적강도평가)

  • 김기성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.59-68
    • /
    • 1997
  • Recently, the cases of using bonded dissimiliar materials which have each of the different components tend to increase for the purpose of developing new materials and using the special objects in the field of industry. Among the cases the strength evaluation of the joining materials of vehicle engine and the structural materials with ceramic/metal bonded joints becomes more important. But the residual stress occurs, because the joining of ceramics and metals is performed in extremely high temperature. It becomes a dominant cause to reduce the strength of the ceramic/metal bonded joints. In this paper, strength evaluation method of ceramic/metal bonded joints considering stress singularity was investigated by boundary element method and 4-point bending test. An advanced method of quantitative strength evaluation for ceramin/metal bonded joints is to be suggested.

  • PDF

Development of Metal Recovery Process for Municipal Incineration Bottom Ash (MIBA)

  • Kuroki, Ryota;Ohya, Hitoshi;Ishida, Kazumasa;Yamazaki, Kenichi
    • Resources Recycling
    • /
    • v.28 no.3
    • /
    • pp.21-25
    • /
    • 2019
  • The utilization of incineration ash from municipal waste must be promoted to solve the social problem on the shortage of final disposal site. In this research, metals should be recovered to avoid the damage of the crushing machine during the utilization of incineration ash in cement industry. In fact, incineration bottom ash from municipal waste contains iron in 3-5%. Nonferrous metal and stainless steel in 1% is also included. The research and development on the physical recovery process was performed not only to remove the metals but also to recover high grade products. Metals were separated from incineration ash in Maruya Co. Ltd.. In fact, iron scrap recovered by magnetic separation can be selled. After that, mixed metal was separated from incineration ash using screen. In this research, mixed metal tried to divided copper, aluminum, brass and stainless steel using drum type magnetic separation, eddy current separation and high magnetic separation. As a result, recovered iron had an 80% for the grade. Aluminum was recovered by eddy current separation without copper and brass.

Metal Injection Moulding -Technological Trends and European Business Situation

  • Petzoldt, Frank
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.229-230
    • /
    • 2006
  • The global metal injection moulding industry is getting mature. The technology is on its way to grow from a niche technology to a widely accepted manufacturing process. This paper addresses the latest technological trends in MIM. Challenges in materials development as well as the current limits of the technology are discussed. Trends in processing like 2-component injection moulding and micro injection moulding are presented. The European MIM market situation is described and some key factors for business success are addressed. In the discussion of future business opportunities best practice examples are included.

  • PDF

Considerations of Acid Decomposition System for the Analysis of Heavy Metals in Packaging-grade Paper (포장용지류에서의 중금속 분석을 위한 산분해 전처리 방법의 탐색)

  • Lee, Tai-Ju;Ko, Seung-Tae;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.1
    • /
    • pp.65-73
    • /
    • 2011
  • The fibrous raw materials in packaging-grade paper production in Korea were mainly obtained from waste paper. The use of recycled paper has both positive and negative impacts in papermaking process. The primary positive impacts are the environmental protection and manufacturing cost reduction, and the negative impacts are the quality reduction in paper quality and the accumulation of heavy metals and other pollutants in wet- and dry-end process. This study was carried out to consider the optimum acid decomposition system with the highest recovery rate for the analysis of heavy metals in packaging-grade paper. The open digestion system using Kjeldahl apparatus and the closed digestion system using microwave oven for decomposing the organic materials in paper were compared. In both open and closed digestion method, the combination of nitric acid, hydrochloric acid and hydrogen peroxide showed higher recovery rate than using only nitric acid alone because the presence of Cl- ions in hydrochloric acid stabilizes ligand formation with metal ions. KOCC was observed to have the highest heavy metal content among the recycled paper samples. The heavy metal contents decomposed with the closed digestion system were relatively higher than with open digestion system.

The Bonding Strength Characteristic of the Filler Metal Powder on the TLP Bonded Region of Superalloy GTD-111DS (일방향 초내열합금 GTD-111DS에서 삽입금속 분말에 따른 천이액상확산접합부의 접합강도 특성)

  • Oh, In-Seok;Kim, Gil-Moo;Moon, Byeong-Shik
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.45-50
    • /
    • 2007
  • The Ni-base superalloy GTD111 DS is used in the first stage blade of high power land-based gas turbines. Advanced repair technologies of the blade have been introduced to the gas turbine industry over recent years. The effect of the filler metal powder on Transient Liquid Phase bonding phenomenon and tensile mechanical properties was investigated on the GTD111 DS superalloy. At the filler metal powder N series, the base metal powders fully melted at the initial time and a large amount of the base metal near the bonded interlayer was dissolved by liquid inter metal. Liquid filler metal powder was eliminated by isothermal solidification which was controlled by the diffusion of B into the base metal. The solids in the bonded interlayer grew from the base metal near the bonded interlayer inward the insert metal during the isothermal solidification. The bond strength of N series filler metal powder was over 1000 MPa. and ${\gamma}'$ phase size of N series TLP bonded region was similar with base metal by influence of Ti, Al elements. At the insert metal powder M series, the Si element fluidity of the filler metal was good but microstructure irregularity on bonded region because of excessive Si element. Nuclear of solids formed not only from the base metal near the bonded interlayer but also from the remained filler metal powder in the bonded interlayer. When the isothermal solidification was finished, the content of the elements in the boned interlayer was approximately equal to that of the base metal. But boride and silicide formed in the base metal near the bonded interlayer. And these boride decreased with the increasing of holding time. The bond strength of M series filler metal powder was about 400 MPa.