• Title/Summary/Keyword: Metal fraction

Search Result 560, Processing Time 0.029 seconds

Mechanical strength analysis for functionally graded composite plates (경사기능 복합재료 판의 기계적 강도해석)

  • Na, Kyung-Su;Kim, Ji-Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.66-69
    • /
    • 2005
  • Mechanical strength of functionally graded composite plates that composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an IS-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared with those of the previous works. In addition, the displacements, the tensile stresses and the compressive stresses are analyzed for the variation of FGM thickness ratio and volume fraction distribution.Mechanical strength of functionally graded composite plates that composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an IS-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared with those of the previous works. In addition, the displacements, the tensile stresses and the compressive stresses are analyzed for the variation of FGM thickness ratio and volume fraction distribution.

  • PDF

Evaluation of the Performance of Multi-binders (lime, DAP and ladle slag) in Treating Metal(loid)s-contaminated Soils (중금속류 오염 토양 처리를 위한 복합 고화제(lime, DAP, 래들 슬래그) 성능 평가)

  • Choi, Jiyeon;Shin, Won Sik
    • Journal of Environmental Science International
    • /
    • v.26 no.8
    • /
    • pp.955-966
    • /
    • 2017
  • Amendment of multi-binders was employed for the immobilization of metal(loid)s in field-contaminated soils to reduce the leaching potential. The effect of different types of multi-binders (lime/diammonium phosphate, diammonium phosphate/ladle slag and lime/ladle slag) on the solidification/stabilization of metal(loid)s (Pb, Zn, Cu and As) from the smelter soil and mine tailing soil were investigated. The amended soils were evaluated by measuring Toxicity Characterization Leaching Procedure (TCLP) leaching concentration of metal(loid)s. The results show that the leaching concentration of metal(loid)s decreased with the immobilization using multi-binders. In terms of TCLP extraction, the mixed binder was effective in the order of lime/ladle slag > diammonium phosphate/ladle slag > lime/diammonium phosphate. When the mixed binder amendment (0.15 g lime+0.15 g ladle slag for 1g smelter soil and 0.05 g lime+0.1 g ladle slag for 1 g mine tailing soil, respectively) was used, the leaching concentration of metal(loid)s decreased by 90%. However, As leaching concentration increased with diammonium phosphate/lime and diammonium phosphate/ladle slag amendment competitive anion exchange between arsenic ion and phosphate ion from diammonium phosphate. The Standard, Measurements and Testing programme (SM&T) analysis indicated that fraction 1 (F1, exchangeable fraction) decreased, while fraction 4 (F4, residual fraction) increased. The increased immobilization efficiency was attributed to the increase in the F4 of the SM&T extraction. From this work, it was possible to suggest that both arsenic and heavy metals can be simultaneously immobilized by the amendment of multi-binder such as lime/ladle slag.

Characteristics of Ni-coated diamond/Metal Composite Coatings by Cold Spray Deposition (니켈 코팅된 다이아몬드/금속 복합재의 저온분사 코팅특성)

  • Jung, Dong-Jin;Kim, Hyung Jun;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.550-557
    • /
    • 2009
  • In this study, bronze or SUS304 powders blended with 10 wt.% diamond particles were used to prepare metal/diamond composite materials deposited by cold spraying. The effects of matrix metal, diamond partical size, and the thickness of the Ni coating on the diamond were studied on Al 6061 substrate. The results showed that the hardness of the metal/diamond composite coating layers was higher than that of the same composite materials when using the sintering method. The fraction of diamond content in the coated layer increased when the metal matrix was soft. When the size of the diamond particles was reduced, the fraction of the diamond particles increased. In addition, in the case of diamond with a thicker Ni-coated layer, the fracturing of diamonds was mitigated in the composite coating layers.

Electrokinetic Removal and Removal Characteristics of Heavy Metals from Metal-Mining Deposit (동전기법에 의한 광산퇴적토의 중금속 제거 특성)

  • Lee, Chang-Eun;Shin, Hyun-Moo
    • Journal of Environmental Science International
    • /
    • v.12 no.2
    • /
    • pp.227-236
    • /
    • 2003
  • Electrokinetic remediation technique offers the opportunity to extract heavy metals from soils with high plasticity. The experiment demonstrated the applicability of electrokinetic remediation on metal-mining deposit and the decision of the enhancement method for four kinds of bench-scale studies. According to the sequential extraction of heavy metals in the "I" mining deposit, Pb and Cu were mostly associated with residual fraction and Zn and Cd were associated with water soluble and residual fraction. Therefore, removable fractions by electrokinetic technology was determined by the sum of the fraction of water soluble and exchangeable, which is Cu : 19.53%, Pb : 1.42%, Cd : 52.82%, Zn : 57.28%, respectively. When considering electrical potential, volume of effluent, soil pH, and eliminated rate of contaminant, results determined by sum of each weight were Citric aic+SDS (13) > 0.1N $HNO_3$ (10) > HAc (8) > DDW (4). Therefore, citric acid and SDS mixed solution was determined the best enhancing agent for the remediation of metal mining deposit.g deposit.

Fraction and Mobility of Heavy Metals in the Abandoned Closed Mine Near Okdong Stream Sediments (폐광산 지역 옥동천 퇴적물내에 포함된 중금속의 존재형태 및 이동성)

  • Kim Hee-Joung;Yang Jae-E;Lee Jai-Young;Jun Sang-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.44-51
    • /
    • 2005
  • Fractional composition and mobility of some heavy metals in sediments from Okdong stream are investigated. The fractional scheme for heavy metals in the sediment was established for five chemically defined heavy metal forms as adsorbed fraction, carbonate fraction, reducible fraction, organic fraction, and residual fraction. The most abundant fraction heavy metals in the sediments is reducible and secondly abundant is organic fraction. Adsorbed fraction is minor part of the total heavy metals. Mobilization of heavy metals in the sediments from Okdong stream occur $19.8{\sim}56.7%$ of total cadmium concentrate. The most abundant fraction of the sediment metal is organic fraction in Cu, Pb metals investigated. Labile fraction of sediment metals are $0.5{\sim}48.5%$ of total Zn, $2.6{\sim}48.1%$ of total Pb, and $0.2{\sim}36.9%$ of total Cu, respectively. Most of labile fraction consists of reducible fraction for Cd, Zn, adsorbed fraction for Pb, reducible fraction for Cu, adsorbed fraction for Ni. The Mobilization of Zn and Cu is most likely to occur when oxygen depletes and that of Pb and Ni occurs when physical impact, oxygen depletion and pH reduction.

Wear Resistance Characteristics of Iron System MAG Weld Overlays with Chromium and Niobium Carbide Composite (Cr 및 Nb 복합탄화물에 의한 철계 MAG용접 오버fp이의 내마모 특성)

  • 김종철;박경채
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.54-59
    • /
    • 2002
  • Overlays is a treatment of the surface and near-surface regions of a material to allow the surface to perform functions that are distinct from those frictions demanded far the bulk of the material. Welding, thermal spray, quenching, carburizing and nitration have been used as the surface treatment. Especially, weld overlay is a relatively thick layer of filler metal applied to a carbon or low-alloy steel base metal for the purpose of providing a wear resistant surface. In this study, weld overlay was performed by MAG welding on the base metal(SS400) with filler metal which contain composite powders($Cr_3C_2+Mn+Mo+NbC$) and solid wire(JIS-YGW11). Characteristics of hardness and wear resistance on overlays were analyzed by EDS, EPMA, XRD and microstructures. Carbide formations were $M(Cr, Fe)_7C_3$ and NbC phases. And carbide volume fraction, hardness and specific wear resistance of overlays were increased with increasing powder feed rate and decreasing wire fred rate. Hardness and wear resistance were almost proportioned to carbide volume fraction of overlay.

Wave propagation of graphene platelets reinforced metal foams circular plates

  • Lei-Lei Gan;Jia-Qin Xu;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.645-654
    • /
    • 2023
  • Based on first-order shear deformation theory, a wave propagation model of graphene platelets reinforced metal foams (GPLRMFs) circular plates is built in this paper. The expressions of phase-/group- velocities and wave number are obtained by using Laplace integral transformation and Hankel integral transformation. The effects of GPLs pattern, foams distribution, GPLs weight fraction and foam coefficient on the phase and group velocity of GPLRMFs circular plates are discussed in detail. It can be inferred that GPLs distribution have great impacts on the wave propagation problems, and Porosity-I type distribution has the largest phase velocity and group velocity, followed by Porosity-III, and finally Porosity-II; With the increase of the GPLs weight fraction, the phase- and group- velocities for the GPLRMFs circular plate will be increased; With the increase of the foam coefficient, the phase- and group- velocities for the GPLRMFs circular plate will be decreased.

Reheating Process of Metal Matrix Composites Fabricated by Combined Stirring Process for Thixoforming (복합교반법으로 제조한 금속복합재료의 Thixoforming용 재가열공정)

  • 이동건;강충길
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.45-53
    • /
    • 2002
  • The forming process of metal matrix composites by die casting and squeeze casting process are limited in size and dimension In term of final parts. The melt strirring method have the problems that the homogeneous distribution of the reinforcements is difficult due to the low weldability and the density difference between the molten metal and the reinforcement. The thixoforming process for metal matrix composites has numerous advantages compacted to die casting, squeeze casting and compocasting. However, for the thixofoming process, the billet with the desired volume fraction must be heated to obtain a uniform temperature distribution over the entire cross-sectional areas. To obtain the reheating conditions of composites, the particulate reinforced metal matrix composites for thixoforming were fabricated by combined stirring process which is simultaneously performed with electro-magnetic stirring and mechanical stirring process. The matrix alloy and reinforcement are used to aluminum alloy(A357) and SiCp with diameter 14, $25{\mu}m$, respectively. The microstructure characteristics were investigated by changing the volume fraction and reinforcement size. The heating conditions to obtain the uniform temperature distribution in cross section area of fabricated metal matrix composites billet are proposed with heating time, the heating temperature and the holding time.

Effects of Heat Input and Preheat/interpass Temperature on Strength and Impact Toughness of Multipass Welded Low Alloy Steel Weld Metal (다층용접한 저합금 용접금속의 강도와 인성에 미치는 입열량 및 예열/패스간 온도의 영향)

  • Bang, Kook-soo;Jung, Ho-shin;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.481-487
    • /
    • 2015
  • The effects of the heat input and preheat/interpass temperatures on the tensile strength and impact toughness of multipass welded weld metal were investigated and interpreted in terms of the recovery of the alloying elements and microstructure. Increases in both the heat input and preheat/interpass temperatures decreased the tensile strength of the weld metal. A lower recovery of alloying elements, especially Mn and Si, and smaller area fraction of acicular ferrite in the weld metal were observed in higher heat input welding, resulting in a lower tensile strength. In contrast, only a microstructure difference was observed at a higher preheat/interpass temperature. The impact toughness of the weld metal gradually increased with an increase in the heat input because of the lower tensile strength. However, it decreased again when the heat input was larger than 45 kJ/cm because of the much smaller area fraction of acicular ferrite. No effect of the preheat/interpass temperature on the impact toughness was observed. The formation of a weld metal heat-affect zone showed little effect on the impact toughness of the weld metal in this experiment.

Assessment of Pollution Level and Contamination Status on Mine Tailings and Soil in the Vicinity of Disused Metal Mines in Kangwon Province (강원도 폐금속광산지역의 광미와 주변토양의 중금속 오염현황 및 오염도 평가)

  • Kim, Joung-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.626-634
    • /
    • 2005
  • The objectives of this study was to assess pollution level and contamination status on tailings and soil in the vicinity of four disused metal mines in Kangwon province. As the result of total metal concentrations analysis, the pollution degree of tailings and soil decreased in the order of Wondong > Second Yeonhwa > Sinyemi ${\fallingdotseq}$ Sangdong mines. Total metal concentrations of mine tailings in this study were $1.2{\sim}78.2$ and $1.1{\sim}80.6$ times higher than those in the background soil and the tolerable levels suggested by Kloke, respectively. From these results, we found that tailings served as contamination source of nearby soil. According to sequential extraction of metals, large proportion of heavy metals in all mine tailings existed in the form of a residual fraction, and heavy metals in non-residual form was mainly associated with Fe-Mn oxide fraction and sulfidic-organic fraction. Fe-Mn oxide fraction and sulfidic-organic fraction of heavy metals may be released into and contaminated the nearby environment under the oxidation or reduction condition in long-term. In particular, the proportions of the exchangeable and carbonate fraction of Cd in mine tailings from Second Yeonhwa mine were relatively high. This suggests that Cd may be easily released into and contaminated the nearby environment in the near time. Concentrations of heavy metals in mine tailings and the nearby soil exceeded the standard (agricultural area) of Soil Environment Conservation Law. So it was thought that remediation for mine tailings and the nearby soil is needed. The pollution indices of the samples in this study were for higher than 1.0 and the pollution degree was very serious. Priority remediation site for these mines was Wondong. As Results of danger indices, it was showed that exchangeable form in Wondong and Fe-Mn oxide form in the rest mines should be removed preferentially.