• Title/Summary/Keyword: Metal fillers

Search Result 45, Processing Time 0.029 seconds

Fabrication and Microstructure of Metal-Coated Carbon Nanofibers using Electroless Plating (무전해 도금을 이용한 금속 코팅된 탄소나노섬유의 제조 및 미세조직)

  • Park, Ki-Yeon;Yi, Sang-Bok;Kim, Jin-Bong;Lee, Jin-Woo;Lee, Sang-Kwan;Han, Jae-Hung
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.43-48
    • /
    • 2007
  • The absorption and the interference shielding of electromagnetic wave have been very important issues for commercial and military purposes. The stealth technique is one of the most typical applications of electromagnetic wave absorption technology. This study has started for the development of composite fillers containing dielectric and magnetic lossy materials. To improve the electromagnetic characteristics of conductive nano fillers, carbon nanofibers (CNFs) with nickel-phosphorous (Ni-P) or nickel-iron (Ni-Fe) have been fabricated by the electroless plating process. Observations by the electron microscopy (SEM/TEM) and element analyzer (EDS/ELLS) showed the uniform Ni-P and Ni-Fe coated CNFs. The compositions of the plating layers were about Ni-6wt%P and Ni-70wt%Fe, respectively. The average thicknesses of the plating layers were about $50\;{\sim}\;100\;nm$.

Effect of Properties of Fiber and Mineral Filler on Aging of Archival Documents (재료적 특성(섬유 및 금속)이 종이 기록물의 열화도에 미치는 영향)

  • Shin, Joung-Soon
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.30 no.3
    • /
    • pp.13-21
    • /
    • 2012
  • This study was carried out to evaluate the stability of archival documents produced using papers. The properties of archival documents depend on the type of fillers of papers that are used such as fiber, non cellulose fiber, and mineral. The physio-chemical characteristics of archival documents were analyzed by employing acid hydrolysis against cellulose fiber substances. Fibers of Korean hand-made (Hanji), flex, and cotten papers showed higher pH and the degree of polymerization (DP) than wood fiber and mechanical fiber. Mechanical pulp containing 12.8% of lignin showed the greatest decrease of DP due to acid hydrolysis, and this resulted in increase of degree of aging. The filler found to clay and talc did not contain metal such as $Fe^{+2}$, $Fe^{+3}$, and $Cu^{+2}$. The alkaline metals such as Mg, Ca, and Ti showed greater resistance to acid hydrolysis.

Patch-type large strain sensor using elastomeric composite filled with carbon nanofibers

  • Yasuoka, Tetsuo;Shimamura, Yoshinobu;Todoroki, Akira
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.146-151
    • /
    • 2013
  • Carbon nanofibers (CNFs) are electrically conductive. When CNFs are used as fillers in resin, this electrical conductivity can be yielded without adversely affecting the mechanical properties of the resin. When an elastomer is adopted as the resin, a conductive elastomer can then be produced. Due to its flexibility and conductive properties, a large strain sensor based on changes in resistivity may be produced, for strain sensing in flexible structures. In this study, a patch-type large strain sensor using resistivity change in a CNF/elastomer composite was proposed. The measurement limits of the sensor were investigated experimentally, and the limit was found to be 40%, which greatly exceeded the limits of conventional metal-foiled strain gages. Also, the proposed CNF/elastomer large strain sensor can be used to measure flexible materials, while conventional strain gages cannot be used to measure such strains.

Nanotechnology in elastomers- Myth or reality

  • Shanmugharaj, A.M.;Ryu, Sung-Hun
    • Rubber Technology
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Nanotechnology is the fast becoming key technology of the $21^{st}$ century. Due to its fascinating size-dependent properties, it has gained significant important in various sectors. Myths are being formed on the proverbal nanotechnology market, but the reality is the nanotechnology is not a market but a value chain. The chain comprises of - nanomaterials (nanoparticles) and nanointermediates (coatings, compounds, smart fabrics). Elastomer based nanocomposites reinforced with low volume fraction of nanofillers is the first generation nanotechnology products and it has attracted great interest due to their fascinating properties. The incorporation of nanofillers such as nanolayered silicates, carbon nanotubes, nanofibers, metal oxides or silica nanoparticles into elastomers improves significantly their mechanical, thermal, barrier properties, flame retardency etc., Extremely small particle size, high aspect ratio and large interface area yield an excellent improvement of the properties in a wide variety of the materials. Uniform dispersion of the nanofillers is a general prerequisite for achieving desired properties. In this paper, current developments in the area of elastomer based nanocomposites reinforced with layered silicate and carbon nanotube fillers are highlighted.

  • PDF

Effect of Parameters on the Particle Size in Dispersion Polymerization of Poly(methy1 methacrylate) (분산중합 변수가 폴리메틸메타크릴레이트의 입자크기에 미치는 영향)

  • Kim, Su-Jin;Wu, Jong-Pyo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.257-261
    • /
    • 2000
  • Monodisperse polymer particles have many industrial applications such as surface coatings for metal panels, chromatographic media, spacers for liquid crystal display panel, and fillers for cosmetics, etc.. Micron-size monodispersed poly(methyl methacrylate) particles were prepared by dispersion polymerization in methanol medium in the presence of poly(vinyl pyrrolidone) and 2,2'-azobis(isobutyronitrile) as steric stabilizer and initiator, respectively. Effects of polymerization parameters, such as monomer and initiator concentration, stabilizer type and concentration, solvent composition on average particle size and size distribution were studied.

Subcision Using a Spinal Needle Cannula and a Thread for Prominent Nasolabial Fold Correction

  • Lee, Sang-Yeul;Sung, Kun-Yong
    • Archives of Plastic Surgery
    • /
    • v.40 no.3
    • /
    • pp.256-258
    • /
    • 2013
  • Deepening of the nasolabial crease is an esthetically unpleasing aging phenomenon occurring in the midface. Various treatment modalities have been introduced to improve the appearance of prominent nasolabial folds, all of which have pros and cons. Currently, a minimally invasive technique using synthetic dermal fillers is most commonly used. A simple and easy subcision procedure using a wire scalpel has also been used and reported to be effective for prominent nasolabial fold correction, with minimal complications. As an alternative to the wire scalpel, we used a 20-gauge metal type spinal needle cannula (Hakko Co.) and 4-0 Vicryl suture (Ethicon Inc.) for subcision of nasolabial folds. This technique is less expensive than the use of a wire scalpel and easily available when needed. Therefore, on the basis of favorable results, our modified subcision technique may be considered effective for prominent nasolabial fold correction.

Comparison of Wear Property Between Metal and Polymer Matrix Composites (금속복합재료와 고분자복합재료의 마모 특성 비교)

  • KIM, Jae-Dong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.6
    • /
    • pp.1875-1881
    • /
    • 2016
  • The wear behavior for the two types of composites, those are epoxy matrix composites filled with silica particles and aluminium matrix composites filled with SiC particles, were compared to investigate the wear mechanism for these composites. Especially, the effect of the volume fraction for the epoxy matrix composites and the particle size for the aluminium matrix composites according to the apply load and sliding velocity were investigated. Wear tests of the pin-on-disc mode were carried out and followed by scanning electron microscope observations for the worn surface. The addition of the fillers in the composites were improved the wear resistance significantly and changed the wear mechanism for the both composites. These results were identified by the observation of the worn surface after testing.

Fiber Reinforced Inlay Adhesion Bridge

  • Cho, Lee-Ra;Yi, Yang-Jin;Song, Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.3
    • /
    • pp.366-374
    • /
    • 2000
  • FRC/ceromer system provides the clinician with a durable, flexible, and esthetic alternative to conventional porcelain fused to metal crowns. FRC is the matrix which is silica-coated and embedded in a resin matrix. The ceromer material which is a second generation indirect composite resin contains silanized, microhybrid inorganic fillers embedded in a light-curing organic matrix. FRC/ceromer restoration has a several advantages: better shock absorption, less wear of occluding teeth, translucency, color stability, bonding ability to dental hard tissues, and resiliency. It has versatility of use including inlay, onlay, single crown, and esthetic veneers. With adhesive technique, it can be used for single tooth replacement in forms of inlay adhesion bridge. In single tooth missing case, conventional PFM bridge has been used for esthetic restoration. However, this restoration has several disadvantages such as high cost, potential framework distortion during fabrication, and difficulty in repairing fractures. Inlay adhesion bridge with FRC/ceromer would be a good alternative treatment plan. This article describes a cases restored with Targis/Vectris inlay adhesion bridge. Tooth preparation guide, fabrication procedure, and cementation procedure of this system will be dealt. The strength/weakness of this restoration will be mentioned, also. If it has been used appropriately in carefully selected case, it can satisfy not only dentist's demand of sparing dental hard tissue but also patient's desire of seeking a esthetic restorations with a natural appearance.

  • PDF

Electromagnetic Interference shielding effectiveness of carbon black / Glass fiber woven roving and Carbon fiber unidirectional fabric reinforced composite (카본블랙/섬유강화 복합재료의 전자파 차폐효과)

  • Kim J.S.;Han G.Y.;Ahn D.G.;Lee S.H.;Kim M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1322-1325
    • /
    • 2005
  • The main objectives of this research work are to develop conductive glass fiber woven roving and carbon fiber unidirectional fabric composite materials and to determine their electromagnetic shielding effectiveness(EMSE). Epoxy is the matrix phase and glass, carbon fiber are the reinforcement phase of the composite material. Carbon black are incorporated as conductive fillers to provide the electromagnetic shielding properties of the composite material. The amount of carbon black in the composite material is varied by changing the carbon black composition, woven roving and unidirectional (fabric) structure. The EMSE of various fabric composites is measured in the frequency range from 300MHz to 800MHz. The variations of EMSE of woven roving and unidirectional composites with fabric structure, metal powder composite are described. Suitability of conductive fabric composites for electromagnetic shielding applications is also discussed.

  • PDF

Effect of Photosensitive Carbon Nanotube Paste on Field Emission Properties (감광성 탄소나노튜브 페이스트의 조성과 열처리가 전계방출 특성에 미치는 영향)

  • Oh, Jeong-Seob;Kim, Dae-Jun;Jeong, Jin-Woo;Song, Yoon-Ho;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.550-556
    • /
    • 2006
  • Photosensitive carbon nanotube (CNT) pastes are explored to develop a CNT field emitter for field emission display (FED) application. We formulated a photosensitive paste including multi-walled CNTs (MWNTs) for screen printing. The photosensitive CNT paste was synthesized by mixing of MWNTs, inorganic fillers (nano metal), organic vehicle, monomers and photo initiator. The CNT paste films were patterned by using backside exposure technique. The CNTs were strongly fixed on a cathode by formation of carbon residue during firing process. For the CNT emitters, current-voltage(I-V) characteristics and images of field emission were evaluated. The emission properties of CNT emitters are dependent on the paste composition. A turn-on electric field for the CNT field emitters is measured to be 1 V/$\mu$m. Additionally, the effect of heat treatment parameter on field emission properties was discussed. The newly formulated photosensitive CNT paste can be potentially applicable to highly reliable CNT field emitters.