• 제목/요약/키워드: Metal complexes

검색결과 665건 처리시간 0.025초

Molecular Wire World Having Metal Complexes

  • Choi, Chang-Shik
    • Rapid Communication in Photoscience
    • /
    • 제3권3호
    • /
    • pp.42-47
    • /
    • 2014
  • Development of molecular and supramolecular systems showing efficient photoinduced energy or electron transfer are of current research interest due to their applications in various chemical and biological processes. Various polypyridine metal complexes including Ru(II), Ru(III), Os(II), Pt(II), Fe(II), Re(I), Ir(III) and so on as a metal center introduce for expanding some more understanding of molecular-scale photoelectronics. Their complexes are concisely classified by the types of relay ligands as follows; (a) metal-direct ligand-metal system; dinuclear or trinuclear systems, (b) metal-nonconjugated ligand-metal system and metal-nonconjugated ligand system having flexible/rigid ligand, (c) metal-conjugated ligand-metal system, and (d) conjugated ligand-metal-conjugated ligand system and metal-self assembly ligand-metal system. It is pointed out that the role played by the relay ligands is important in constructing the metal complexes.

mPW1PW91 Calculated Structures and IR Spectra of Thiacalix[4]biscrown-5 Complexed with Alkali Metal Ions

  • Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1685-1691
    • /
    • 2011
  • The molecular structures of thiacalix[4]biscrown-5 (1) and p-tert-butylthiacalix[4]biscrown-5 (2) and their alkali-metal-ion complexes were optimized using the DFT BLYP/6-31G(d) and mPW1PW91/6-31G(d,p) (hybrid HF-DF) calculations. The total electronic energies, the normal vibrational modes, and the Gibbs free energies of the mono- and di-topic complexes of each host with the sodium and potassium ions were analyzed. The $K^+$-complexes exhibited relatively stronger binding efficiencies than $Na^+$-complexes for both the monoand di-topic complexes of 1 and 2 comparing the efficiencies of the sodium and potassium complexes with an anisole and phenol. The mPW1PW91/6-31G(d,p) calculated distances between the oxygen atoms and the alkali metal ions were reported in the alkali-metal-ion complexes ($1{\cdot}Na^+$, $1{\cdot}2Na^+$, $1{\cdot}K^+$, $1{\cdot}2K^+$, $2{\cdot}Na^+$, $2{\cdot}Na^+$, $2{\cdot}K^+$, $2{\cdot}2K^+$). The BLYP/6-31G(d) calculated IR spectra of the host 1 and its mono-topic alkali-metal-ion complexes are compared.

Synthesis and Spectral Characterization of Antifungal Sensitive Schiff Base Transition Metal Complexes

  • Raman, N.;Sakthivel, A.;Rajasekaran, K.
    • Mycobiology
    • /
    • 제35권3호
    • /
    • pp.150-153
    • /
    • 2007
  • New $N_2O_2$ donor type Schiff base has been designed and synthesized by condensing acetoacetanilido-4-aminoantipyrine with 2-aminobenzoic acid in ethanol. Solid metal complexes of the Schiff base with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, fast atom bombardment (FAB) mass, IR, UV-Vis, and $^1H$ NMR spectral studies. The data show that the complexes have the composition of ML type. The UV-Vis. and magnetic susceptibility data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The in vitro antifungal activities of the compounds were tested against fungi such as Aspergillus niger, Aspergillus flavus, Rhizopus stolonifer, Candida albicans, Rhizoctonia bataicola and Trichoderma harizanum. All the metal complexes showed stronger antifungal activities than the free ligand. The minimum inhibitory concentrations (MIC) of the metal complexes were found in the range of $10{\sim}31{\mu}g/ml$.

Epoxidation of Olefins by Iodosylbenzene Catalyzed by Non-Porphyrin Metal Complexes

  • Nam Wonwoo;Baek Seung Joong;Kazuko I. Liao;Joan Selverstone Valentine
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권12호
    • /
    • pp.1112-1118
    • /
    • 1994
  • Epoxidation of olefins has been studied using iodosylbenzene (PhIO) as the terminal oxidant and binuclear and mononuclear complexes of $Mn^{2+}$, $Co^{2+}$, and $Cu^{2+}$ as catalysts. Epoxides were the predominant products with trace amounts of allylic oxidation products, and the metal complexes were found to be effective catalysts in the epoxidation reactions. The reactivity of binuclear copper complexes was greater than that of the mononuclear copper complexes, whereas the binuclear and mononuclear complexes of $Mn^{2+}$ and $Co^{2+}$ showed similar reactivities. The nature of the ligands bound to copper did not influence the reactivity of the binuclear copper complexes so long as copper ions were held in close proximity. A metal-iodosylbenzene complex, such as suggested previously for Lewis acidic metal complex-catalyzed epoxidation by iodosylbenzene, is proposed as the active epoxidizing species. Some mechanistic aspects are discussed as well.

Synthesis and Physicochemical Properties of Schiff Base Macrocyclic Ligands and Their Transition Metal Chelates

  • Rafat, Fouzia;Siddiqi, K.S.
    • 대한화학회지
    • /
    • 제55권6호
    • /
    • pp.912-918
    • /
    • 2011
  • Tetraaza Schiff base macrocyclic ligands, $L^1$,$L^2$ and their transition metal chelates have been synthesized and characterized by elemental analyses, IR, electronic, EPR and $^1H$ NMR spectra, TGA and magnetic measurements. The molar conductance of one milli-molar solution of the complexes measured in DMF indicates that the divalent metal complexes are nonelectrolyte while those of trivalent metal ion, are 1:1 electrolytic in the same solvent. The reduction of Racah parameter from the free ion value confirms the presence of considerable covalence of metal ligand sigma bond in the Co(II) and Mn(II) complexes. The EPR spectra of Cu(II) complexes at room temperature shows axial symmetry indicating a $d_x{^2}_{-y}{^2}$ ground state with significant covalent character. The thermal analysis suggests that the complexes do not contain water molecules because only the metal is left as residue.

Calculation of the Dipole Moments for Transition Metal Complexes

  • Golding, R. M.;Ahn, Sang-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • 제2권2호
    • /
    • pp.48-55
    • /
    • 1981
  • A new approach in calculating the dipole moments for transition metal complexes has been proposed and the calculated results are tabulated with the experimental values. The calculated dipole moments are applied to the theoretical prediction or confirmation of the geometric structure for the transition metal complexes.

Synthesis and Crystal Structures of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) Metal Complexes with NNO Functionalized Ligands

  • Jang, Yoon-Jung;Lee, Uk;Koo, Bon-Kweon
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권6호
    • /
    • pp.925-929
    • /
    • 2005
  • Some new metal(II) complexes, $M^{II}L_2$ [M = Mn (1), Co (2), Ni (3), Cu (4), and Zn (5)] of 2-acetylpyridine benzoylhydrazone ligand (HL) containing trifunctional NNO-donor system have been synthesized and crystallographically characterized for the complex 1 and 5. The complexes consist of two ligands to give sixcoordinate, which are bonded to the metal atom on a meridional plane through acetylpyridine ring nitrogen, azomethine nitrogen, and benzoyl oxygen atoms, respectively. The coordination geometry for other complexes was identified on the basis of the physicochemical data by elemental analyses, FAB -MS, IR, $^1H$ NMR, and electronic spectral measurements. The resulting data indicated that the complexes are accordance with the above formulation.

NMR Studies of Metal-binding Luteinizing Hormone Releasing Hormone

  • Won, Ho-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권11호
    • /
    • pp.4021-4026
    • /
    • 2011
  • Functions of the luteinizing hormone releasing hormone (LHRH) and its induced release by divalent metal ions have received great attention because this neurotransmitter subsequently regulates the secretion of luteinizing hormone (LH). Metal-LHRH complexes were synthesized by addition of various Cu(II),Ni(II),Zn(II) ions into LHRH in order to understand how the induced release of LHRH is possible. The degree of complexation was monitored by $^1H$, $^{13}C$-NMR chemical shifts, and final products were identified by Mass spectrometry. Solutionstate structure determination of Zn(II)-LHRH out of metal-complexes was accomplished by using NMR and NMR-based distance geometry (DG). Interproton distance information from nuclear Overhauser effect spectroscopy was utilized for structure determination. Structure obtained in this study has a cyclic conformation exhibiting a specific ${\alpha}$-helical turn with residue numbers His[2]-Leu[7] out of 10 amino acids. Comparison of chemical shifts and EPR studies of Ni(II),Cu(II)-LHRH complexes exhibit that these metal complexes have 4-coordination geometry.

Density Functional Theoretical Study on the Hydricities of Transition Metal Hydride Complexes in Water

  • Kang, Suk-Bok;Cho, Young-Seuk;Hwang, Sun-Gu
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권12호
    • /
    • pp.2927-2929
    • /
    • 2009
  • The hydricities of d$^6$ metal hydride complexes in aqueous solution were calculated by using density functional theoretical (DFT) calculations coupled with a Poisson-Boltzmann (PB) solvent model. Hydricity describes the hydride donor ability of the metal-hydrogen bond, which assists in the study of the mechanism of many catalytic processes and chemical reactions that involve transition metal hydrides. The calculation scheme produced hydricity values that were in good agreement with experimental estimation. The inclusion of a water molecule as a weakly bound ligand to five-coordinate metal complexes gave an improved correlation result.

Experimental and Theoretical Study on Corrosion Inhibition of Mild Steel in Oilfield Formation Water Using Some Schiff Base Metal Complexes

  • Mahross, M.H.;Efil, Kursat;El-Nasr, T.A. Seif;Abbas, Osama A.
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권3호
    • /
    • pp.222-235
    • /
    • 2017
  • First, in this study, the inhibition efficiencies of metal complexes with Cu(II), Ni(II) and Zn(II) of STSC ligand for corrosion control of mild steel in oilfield formation water were investigated. The IEs for a mixture of 500 ppm STSC and 5 ppm metal ion ($Cu^{+2}$, $Ni^{+2}$, $Zn^{+2}$) were found to be 88.77, 87.96 and 85.13 %, respectively. The results were obtained from the electrochemical techniques such as open circuit potential, linear and tafel polarization methods. The polarization studies have showed that all used Schiff base metal complexes are anodic inhibitors. The protective film has been analyzed by FTIR technique. Also, to detect the presence of the iron-inhibitor complex, UV-Visible spectral analysis technique was used. The inhibitive effect was attributed to the formation of insoluble complex adsorbed on the mild steel surface and the adsorption process follows Langmuir adsorption isotherm. The surface morphology has been analyzed by SEM. Secondly, the computational studies of the ligand and its metal complexes were performed using DFT (B3LYP) method with the $6-311G^{{\ast}{\ast}}$ basis set. Finally, it is found that the experimental results were closely related to theoretical ones.