• Title/Summary/Keyword: Metal anode

Search Result 327, Processing Time 0.029 seconds

Self-Regeneration of Intelligent Perovskite Oxide Anode for Direct Hydrocarbon-Type SOFC by Nano Metal Particles of Pd Segregated (Pd 나노입자의 자가 회복이 가능한 지능형 페로브스카이트 산화물 음극의 직접 탄화수소계 SOFC 성능 평가)

  • Oh, Mi Young;Ishihara, Tatsumi;Shin, Tae Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.345-350
    • /
    • 2018
  • Nanomaterials have considerable potential to solve several key challenges in various electrochemical devices, such as fuel cells. However, the use of nanoparticles in high-temperature devices like solid-oxide fuel cells (SOFCs) is considered problematic because the nanostructured surface typically prepared by deposition techniques may easily coarsen and thus deactivate, especially when used in high-temperature redox conditions. Herein we report the synthesis of a self-regenerated Pd metal nanoparticle on the perovskite oxide anode surface for SOFCs that exhibit self-recovery from their degradation in redox cycle and $CH_4$ fuel running. Using Pd-doped perovskite, $La(Sr)Fe(Mn,Pd)O_3$, as an anode, fairly high maximum power densities of 0.5 and $0.2cm^{-2}$ were achieved at 1,073 K in $H_2$ and $CH_4$ respectively, despite using thick electrolyte support-type cell. Long-term stability was also examined in $CH_4$ and the redox cycle, when the anode is exposed to air. The cell with Pd-doped perovskite anode had high tolerance against re-oxidation and recovered the behavior of anodic performance from catalytic degradation. This recovery of power density can be explained by the surface segregation of Pd nanoparticles, which are self-recovered via re-oxidation and reduction. In addition, self-recovery of the anode by oxidation treatment was confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

Charge-Discharge Characteristics of Physically Coated Lithium Anodes by Carbon Powders (탄소분말이 물리적으로 코팅된 리튬 음전극의 충방전 특성)

  • Kim, Kwang Man;Lee, Sang Hyo;Lee, Young-Gi
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.554-559
    • /
    • 2011
  • To improve the safety and electrode characteristics of lithium metal anode, physically coated electrodes on lithium metal surface by three kinds of carbon are prepared and their charge-discharge performances are investigated by adopting the C-Li electrodes as the anode of rechargeable lithium batteries. The lithium anode coated by the carbon powder with smaller particle size and higher surface area, which has higher packing density and lower surface roughness, shows better performance in charge-discharge characteristics. The carbon coating on lithium surface can be more effective in small-sized cells.

Effective Approaches to Preventing Dendrite Growth in Lithium Metal Anodes: A Review

  • Jaeyun Ha;Jinhee Lee;Yong-Tae Kim;Jinsub Choi
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.365-382
    • /
    • 2023
  • A lithium metal anode with high energy density has the potential to revolutionize the field of energy storage systems (ESS) and electric vehicles (EVs) that utilize rechargeable lithium-based batteries. However, the formation of lithium dendrites during cycling reduces the performance of the battery while posing a significant safety risk. In this review, we discuss various strategies for achieving dendrite-free lithium metal anodes, including electrode surface modification, the use of electrolyte additives, and the implementation of protective layers. We analyze the advantages and limitations of each strategy, and provide a critical evaluation of the current state of the art. We also highlight the challenges and opportunities for further research and development in this field. This review aims to provide a comprehensive overview of the different approaches to achieving dendrite-free lithium metal anodes, and to guide future research toward the development of safer and more efficient lithium metal anodes.

An Electrochemical Property Stud on the Corrosion Behavior of Welding Part of RE36 Steel for Marine Structure (해양구조물용 RE36강의 용접부 부식거동에 관한 전기화학적 특성 연구)

  • 김성종;김진경;문경만
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.70-76
    • /
    • 2000
  • The effect of Post Weld Heat Treatment(PWHT) of RE36 steel for marine structure was investigated with parameters such as micro-vickers hardness, corrosion potential and corrosion current density of weld metal(WM), base metal(BM) and heat affected zone(HAZ), and both Al alloy anode generating current and Al alloy anode weight loss quantity etc. Hardness of post-weld heat treated BM, WM and HAZ is lower than that of As-welded condition of each region. However, hardness of HAZ was the highest among those three parts regardless of PWHT temperature and corrosion potential of WM was the highest among those three parts without regard to temperature and corrosion potential of WM was the highest among those three parts without regard to PWHT temperature. The amplitude of corrosion potential difference of each other three parts at PWHT temperature $550^{\circ}C$, $650^{\circ}C$ are smaller than that of three parts by As-welded condition and corrosion current density obtained by PWHT was also smaller than that of As-welded condition. Eventually, it was known that corrosion resistance was increased by PWHT. However both Al anode generating current and anode weight loss quantity were also decreased by PWHT compare to As-welded condition when RE36 steel is cathodically protected by Al anode. Therefore, it is suggested that the optimum PWHT temperature with increasing corrosion resistance and cathodic protection effect is $550^{\circ}C$.

  • PDF

Effect of Metal Ni Atomic Layer Deposition Coating on Ni/YSZ, Anode of Solid Oxide Fuel Cells (SOFCs) (고체산화물 연료전지의 Anode인 Ni/YSZ에 Ni 원자층 증착 코팅의 효과)

  • Kim, Jun Ho;Mo, Su In;Park, Gwang Seon;Kim, Hyung Soon;Kim, Do Heyoung;Yun, Jeong Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.61-66
    • /
    • 2022
  • This study is to increase the surface area and maximize the effect of the catalyst by coating a nanometersized metal catalyst material on the anode layer using atomic layer deposition (ALD) technology. ALD process is known to produce uniform films with well-controlled thickness at the atomic level on substrates. We measured the performance by coating metals (Ni) on Ni/YSZ, which is the most widely known anode material for solid oxide fuel cells. ALD coatings began to show a decrease in cell performance over 3 nm coatings.

Influences of Coatings and Solution Corrosivity on Cathodic Protection of Metallic Materials

  • Yoo, Y.R.;Chang, H.Y.;Jin, T.E.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.106-111
    • /
    • 2006
  • Painting has protected metallic stack but the paint films may be degraded and corrosion problem can be arisen. To protect the painted metal stack, cathodic protection can be applied. If cathodic protection is applied to bare metal, only small area may be protected. However, if cathodic protection is applied to painted metal surface, large area can be protected and the lifetime of paint films can be extended. High corrosion resistant alloys were corroded at a Flue Gas Desulfurization (FGD) facility of power plant within a short period and thus cathodic protection can be used to protect these metals. On the base of computer simulation, if cathodic protection is applied to bare metal in a FGD environment, it was estimated that applied current could almost be spent to protect area near the anode. However, if cathodic protection is applied to high resistant-coated metal, the much larger area from the anode could be effectively protected.

A LiPF6-LiFSI Blended-Salt Electrolyte System for Improved Electrochemical Performance of Anode-Free Batteries

  • Choi, Haeyoung;Bae, YeoJi;Lee, Sang-Min;Ha, Yoon-Cheol;Shin, Heon-Cheol;Kim, Byung Gon
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.78-89
    • /
    • 2022
  • ANODE-free Li-metal batteries (AFLMBs) operating with Li of cathode material have attracted enormous attention due to their exceptional energy density originating from anode-free structure in the confined cell volume. However, uncontrolled dendritic growth of lithium on a copper current collector can limit its practical application as it causes fatal issues for stable cycling such as dead Li formation, unstable solid electrolyte interphase, electrolyte exhaustion, and internal short-circuit. To overcome this limitation, here, we report a novel dual-salt electrolyte comprising of 0.2 M LiPF6 + 3.8 M lithium bis(fluorosulfonyl)imide in a carbonate/ester co-solvent with 5 wt% fluoroethylene carbonate, 2 wt% vinylene carbonate, and 0.2 wt% LiNO3 additives. Because the dual-salt electrolyte facilitates uniform/dense Li deposition on the current collector and can form robust/ionic conductive LiF-based SEI layer on the deposited Li, a Li/Li symmetrical cell exhibits improved cycling performance and low polarization for over 200 h operation. Furthermore, the anode-free LiFePO4/Cu cells in the carbonate electrolyte shows significantly enhanced cycling stability compared to the counterparts consisting of different salt ratios. This study shows an importance of electrolyte design guiding uniform Li deposition and forming stable SEI layer for AFLMBs.

Synthesis and electrochemical performance of transition metal-coated carbon nanofibers as anode materials for lithium secondary batteries

  • Choi, Jin-Yeong;Hyun, Yura;Park, Heai-Ku;Lee, Chang-Seop
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.161-167
    • /
    • 2018
  • In this study, transition metal coated carbon nanofibers (CNFs) were synthesized and applied as anode materials of Li secondary batteries. CNFs/Ni foam was immersed into 0.01 M transition metal solutions after growing CNFs on Ni foam via chemical vapor deposition (CVD) method. Transition metal coated CNFs/Ni foam was dried in an oven at $80^{\circ}C$. Morphologies, compositions, and crystal quality of CNFs-transition metal composites were characterized by scanning electron microscopy (SEM), Raman spectroscopy (Raman), and X-ray photoelectron spectroscopy (XPS), respectively. Electrochemical characteristics of CNFs-transition metal composites as anodes of Li secondary batteries were investigated using a three-electrode cell. Transition metal/CNFs/Ni foam was directly employed as a working electrode without any binder. Lithium foil was used as both counter and reference electrodes while 1 M $LiClO_4$ was employed as the electrolyte after it was dissolved in a mixture of propylene carbonate:ethylene carbonate (PC:EC) at 1:1 volume ratio. Galvanostatic charge/discharge cycling and cyclic voltammetry measurements were taken at room temperature using a battery tester. In particular, the capacity of the synthesized CNFs-Fe was improved compared to that of CNFs. After 30 cycles, the capacity of CNFs-Fe was increased by 78%. Among four transition metals of Fe, Cu, Co and Ni coated on carbon nanofibers, the retention rate of CNFs-Fe was the highest at 41%. The initial capacity of CNFs-Fe with 670 mAh/g was reduced to 275 mAh/g after 30 cycles.

Conversion-Alloying Anode Materials for Na-ion Batteries: Recent Progress, Challenges, and Perspective for the Future

  • Kim, Joo-Hyung;Kim, Do Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.307-324
    • /
    • 2018
  • Rechargeable lithium-ion batteries (LIBs) have been rapidly expanding from IT based applications to uses in electric vehicles (EVs), smart grids, and energy storage systems (ESSs), all of which require low cost, high energy density and high power density. The increasing demand for LIBs has resulted in increasing price of the lithium source, which is a major obstacle to wider application. To date, the possible depletion of lithium resources has become relevant, giving rise to the interest in Na-ion batteries (NIBs) as promising alternatives to LIBs. A lot of transition metal compounds based on conversion-alloying reaction have been extensively investigated to meet the requirement for the anodes with high energy density and long life-time. In-depth understanding the electrochemical reaction mechanisms for the transition metal compounds makes it promising negative anode for NIBs and provides feasible strategy for low cost and large-scale energy storage system in the near future.

Study on the Corrosionproofing in Concrete by Cathodic Protection (전위변화에 의한 콘크리트내의 철근방식에 관한 연구)

  • Lim, Seo-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.213-220
    • /
    • 1999
  • The purpose of this study is to apply cathodic protection to reinforced concrete structure and provide fundamental data to prevent the corrosion. The theory of cathodic protection of steel in concrete is to apply sufficient direct current so that corroding anodes on the steel are prevented from discharging ions. Two methods are used to supply the external current. In one, the protected metal is the cathode by connecting it to a more active metal. In the second, an external direct current power source supplies the current. The first is the sacrificial-anode system and the second the impressed-current system. The study results showed that the corrosion of the reinforcing steel in concrete could be enormously decreased by using protective current. The sacrificial anode and concrete nave to be adhered closely each in order to prevent the corrosion of reinforcing steel.

  • PDF