• 제목/요약/키워드: Metal alloy

검색결과 1,896건 처리시간 0.025초

금속기복합재료의 바인더 첨가제에 따른 강도 특성 (The Strength Properties of Metal Matrix Composites by Binder Additives)

  • 박원조;허선철
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1051-1057
    • /
    • 2003
  • This study is about controlled impurities, which make metal alloys, especially AC4CH alloy that is made by restraining 0.2% Fe and Aluminum to make a matrix material. A metal matrix composite is produced using the squeeze casting method. The first step in the squeeze casting method is to add some organic binder including aluminum borate whisker into the matrix. After the fabrication of a metal matrix composite, each is individually appended to an inanimate binder such as SiO$_2$, Al$_2$O$_3$, and TiO$_2$. Through experiments the mechanical property changes were investigated between the metal matrix composite and AC4CH alloy. This study proves the superiority of the mechanical property of a metal matrix composites over AC4CH according to the previous tests and results that were mentioned above. One excellent property of matrix material composites is the infiltrated TiO$_2$ reinforcement. This material is a good substitute for the existing materials that are used in the development of industries today.

복합교반법으로 제조한 금속복합재료의 Thixoforming용 재가열공정 (Reheating Process of Metal Matrix Composites Fabricated by Combined Stirring Process for Thixoforming)

  • 이동건;강충길
    • 소성∙가공
    • /
    • 제11권1호
    • /
    • pp.45-53
    • /
    • 2002
  • The forming process of metal matrix composites by die casting and squeeze casting process are limited in size and dimension In term of final parts. The melt strirring method have the problems that the homogeneous distribution of the reinforcements is difficult due to the low weldability and the density difference between the molten metal and the reinforcement. The thixoforming process for metal matrix composites has numerous advantages compacted to die casting, squeeze casting and compocasting. However, for the thixofoming process, the billet with the desired volume fraction must be heated to obtain a uniform temperature distribution over the entire cross-sectional areas. To obtain the reheating conditions of composites, the particulate reinforced metal matrix composites for thixoforming were fabricated by combined stirring process which is simultaneously performed with electro-magnetic stirring and mechanical stirring process. The matrix alloy and reinforcement are used to aluminum alloy(A357) and SiCp with diameter 14, $25{\mu}m$, respectively. The microstructure characteristics were investigated by changing the volume fraction and reinforcement size. The heating conditions to obtain the uniform temperature distribution in cross section area of fabricated metal matrix composites billet are proposed with heating time, the heating temperature and the holding time.

금속기복합재료의 바인더 첨가제에 따른 강도 특성 (The Strength Properties of Metal Matrix Composites by Binder Additives)

  • 박원조;이광영;허선철;최용범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.198-203
    • /
    • 2001
  • This study is about controlled impurities, which make metal alloys, especially AC4CH alloy that is made by restraining 0.2% Fe and Aluminum to make a matrix material. A metal matrix composite is produced using the squeeze casting method. The first step in the squeeze casting method is to add some organic binder including aluminum borate whisker into the matrix. After the fabrication of a metal matrix composite, each is individually appended to an inanimate binder such as $SiO_2,\;Al_2O_3$, and $TiO_2$. Through experiments the mechanical property changes were investigated between the metal matrix composite and AC4CH alloy. This study proves the superiority of the mechanical property of a metal matrix composites over AC4CH according to the previous tests and results that were mentioned above. One excellent property of matrix material composites is the infiltrated $TiO_2$ reinforcement. This material is a good substitute for the existing materials that are used in the development of industries today.

  • PDF

Ni-Cr합금과 도재간의 결합력에 gold-based bonding agent가 미치는 영향 (The effect of the gold based bonding agents on the bond between Ni-Cr alloys and ceramic restorations)

  • 이정환;주규지
    • 대한치과기공학회지
    • /
    • 제29권2호
    • /
    • pp.213-223
    • /
    • 2007
  • The success of a porcelain fused to metal (PFM) restoration depends upon the quality of the porcelain-metal bond. The adhesion between metal substructure and dental porcelain is related to the diffusion of oxygen to the reaction layer formed on cast-metal surface during firing. The purposed of this investigation was to study the effects of gold based bonding agent on Ni-Cr alloy-ceramic adhesion between porcelain matrix, gold based bonding agent and metal substructure interface. gold based bonding agent have been applied as an intermediate layer between a metal substructure and a ceramic coating. gold based bonding agent(Aurofilm NP, Metalor, Swiss) was applied on Ni-Cr alloy surface by four method. Surfaces only air abraded with 110${\beta}\neq$ Al2O3 particles were used as control. metal ceramic adhesion was evaluated by a biaxial flexure test(N=5) and volume fraction of adherent porcelain was determined by SEM/EDS analysis. Result of this study suggest that the layering sequence of gold based bonding agent is very important and can improve porcelain adherence to PFM.

  • PDF

A REVIEW OF INHERENT SAFETY CHARACTERISTICS OF METAL ALLOY SODIUM-COOLED FAST REACTOR FUEL AGAINST POSTULATED ACCIDENTS

  • SOFU, TANJU
    • Nuclear Engineering and Technology
    • /
    • 제47권3호
    • /
    • pp.227-239
    • /
    • 2015
  • The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, doublefault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperature profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain coolable. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel-coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.

도재소부용 Ni-Cr 보철합금 개발에 관한 연구 (A Study on the Development of Porcelain Bonded Ni-Cr Dental Alloy)

  • 이규환;신명철;최부병
    • 대한의용생체공학회:의공학회지
    • /
    • 제6권1호
    • /
    • pp.37-46
    • /
    • 1985
  • Development of a dental Ni-Cr alloy system for porcelain veneering crown and bridge was studied in this research. The principles of alloy design were a) It should not contain toxic beryllium. b) It should have low melting Point. c) It should be easily ground and polished. d) It should possess an adequate strength to resist the deformational force In the mouth. e) It should be bondable Ivith porcelain by chemically. After investigating the effect of minor elements such as boron and rare earth metals on the mechanical properties of the Ni-Cr alloy system, the compromised ideal composition for dental use was determined. The composition was l9.6%, Cr, 5.6% Mo, 3.4% Si, 1, 0% Fe, 0.01% Ti, 0.5-1.0% B, 0.2-0.6% misch metal, balance Ni. To compare the performance of experimental alloy with commercially available alloys, the properties such as strength, melting point, and bond strength were measured. The results Ivere as follows: a) Boron increases the strength of the alloy but reduces the elongation. b) Misch metal increases the strength when the boron content is low, but does not increase the strength when boron content is high. And it reduces the elongation drastically, c) Mechanical strength of the experimental alloy was not superior to commercially available Be containing alloy, but handling performance such as castability, ease of granting and polishing, and cuttability were superior to the Be containing alloy.

  • PDF

Fe-Ni Invar 합금에서 나노 결정립 성장이 열팽창계수에 미치는 영향 (Effect of Nano Grain Growth on Coefficient of Thermal Expansion in Electroplated Fe-Ni Invar Alloy)

  • 임태홍;최병학;정효태
    • 한국재료학회지
    • /
    • 제24권10호
    • /
    • pp.515-519
    • /
    • 2014
  • The aim of this paper is to consider the effect of annealing on the coefficient of thermal expansion (CTE) of electroplated Invar Fe-Ni alloy. The CTE of the as-electroplated alloy is lower than those of alloys annealed at $400^{\circ}C$ and $800^{\circ}C$. XRD peaks become sharper as the as-electroplated alloy is annealed, which means the grain growth. The average grain sizes of as-electroplated and as-annealed alloys at $400^{\circ}C$ and $800^{\circ}C$ are 10 nm, 70 nm, and $2{\mu}m$, respectively, as determined by TEM and EBSD analyses. The CTE variation for the various grain sizes after annealing may come from the magnetostriction effect, which generates strain due to changes in the magnetization state of the alloys. The thermal expansion coefficient is considered to be affected by nano grain size in electroplated Fe-Ni Invar alloys. As grain size decreases, ferromagnetic forces might change to paramagnetic forces. The effect of lattice vibration damping of nano grain boundaries could lead to the decrease of CTE.

Nb이 첨가된 금속소부도재관용 Ni-Cr 합금 표면의 EPMA 관찰 (A Study on EPMA on Ni-Cr Alloy by Nb content for Porcelain Fused to Metal Crown)

  • 김치영;최성민;조현설
    • 대한치과기공학회지
    • /
    • 제28권1호
    • /
    • pp.19-26
    • /
    • 2006
  • The effect of Nb on interfacial bonding characteristics of Ni-Cr alloy for porcelain fused to metal crown (PFM) has been studied in order to investigate oxide layer. A specimens of Ni-Cr alloy, which is 0.8mm in thickness, within the porcelain furnace of 1,000$^{\circ}C$ with four tests such as air, vacuum, air for 5 minutes and vacuum for 5 minutes in order to examine an oxide behavior of alloy surface generated by the adding of Nb to be controlled at a rate of 0, 1, 3 and 5. Oxide film was observed form of the fired specimens with scanning electron microscope (SEM), and at the same time it measured Electron Probe Micro Analyzer (EPMA). The result of this study were as follows: 1. Cr oxide film and Nb oxide film were observed from the surface of specimen to be controlled at a rate of Nb 1%. 2. Nb oxide film was observed from the interface of specimens to be controlled at a rate of Nb 1% and 3%. 3. The stability of oxide films that treated in air were more stable than treated under vacuum.

  • PDF

도재소부전장관용 합금의 납착방법에 따른 납착부 굽힘강도에 대한 연구 (A STUDY ON FLEXURE STRENGTH OF THE SOLDER JOINTS FORMED USING VARIOUS SOLDERING TECHNIQUES FOR CERAMO-METAL ALLOYS)

  • 김진열;전영찬
    • 대한치과보철학회지
    • /
    • 제31권2호
    • /
    • pp.191-205
    • /
    • 1993
  • In order to compare the strength of soldered joints relative to the various sol dering method, soldering processes were performed using Palladium based ceramo-metal alloy(Bond-on 4)and Nickel-cromium alloy(Vera Bond). The obtained data include difference in strength between presoldering and postsoldering The data also contain difference among postsoldered groups for 3 difference soldering methods(torch, infrared. Oven) The following results were obtained : 1. For postsoldering with Pd alloy, the oven-using group showed the highest strength while the difference in strength between the torch-using group and the infrared machine group was negligible. 2. For Pd alloy with the torch method, postsoldering resulted in the higher strength than presoldering. 3. There was a negligible difference in strength between presoldering and postsoldering when Ni-Cr alloy with torch method is used. 4. Through microscopic study of the fractured surfaces, the torch-using group showed more porosity than both the oven-using and the infrared machine groups. 5. In terms of fracturing patterns, the oven-using group showed adhesive failure while both the torch and the infrared machine groups showed cohesive failure and cohesive-adhesive failure.

  • PDF

CaO 도가니에 의한 Ti-6Al-4V 합금의 용해와 주조결함 (Melting of Ti-6Al-4V Alloy Using CaO Crucible and Internal Defects of its Casting)

  • 세이주우치다;킨야카나타;나오히로타나카;오사무야나기사와
    • 한국주조공학회지
    • /
    • 제24권6호
    • /
    • pp.314-322
    • /
    • 2004
  • The CaO crucible is expected to serve as a useful tool for melting Ti and its alloys due to its thermodynamic stability. However, tjere still remain problems that need to be resolved in the melting of Ti and its alloys to enable commerical use. The cause of the defects of Ti-6AI-4V alloy castings melted in the CaO crucible were examined and compared with induction skull melting. The key factors of the melting technique using the CaO crucible, affecting the quality of Ti-6AI-4V alloy castings, were investigated. Defects of the Ti-6AI-4V alloy castings are caused by the chemical reduction of CaO by Ti. Pressurizing with argon gas in a vacuum induction chamber is effective for reducing the defects. Preheating of the charged material in the crucible and quick pouring into a mold of lower temperature, just after melting down, are important for produsing sound Ti-6AI-4V castings.