• 제목/요약/키워드: Metal Transfer

검색결과 957건 처리시간 0.029초

직접압연공정에 있어서 롤과 용탕을 연계한 유한요소 열전도해석 (A Finite Element Heat Transfer Analysis with Coupling of Roll and Molten Metal in Direct Rolling Process)

  • 김영도;강충길
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.946-957
    • /
    • 1994
  • In the steel industries, direct rolling process for production of strip from molten metal has been investigated to simplify processes, to minimize energy consumption, and to improve quality of the strip. In this study, two kinds of practicable scale cooling rollers are proposed. And heat transfer analysis of pool region and cooling roller considering flow of molten metal and roll rotation respectively using the finite element method are performed to obtain the proper initial condition and to observe cooling characteristics of cooling roller. From the results, variations of solidification final points and temperature distribution in roller are observed quantitatively according to roll rotation.

Optimization of a Wire-Spacer Fuel Assembly of Liquid Metal reactor

  • ;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.240-243
    • /
    • 2005
  • This study deals with the shape optimization of a wire spacer fuel assembly of Liquid Metal Reactors (LMRs). The Response Surface based optimization Method is used as an optimization technique with the Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer using Shear Stress Transport (SST) turbulence model as a turbulence closure. Two design variables namely, pitch to fuel rod diameter ratio and lead length to fuel rod diameter ratio are selected. The objective function is defined as a combination of the heat transfer rate and the inverse of friction loss with a weighting factor. Three level full-factorial method is used to determine the training points. In total, nine experiments have been performed numerically and the resulting datas have been analysed for optimization study. Also, a comparison has been made between the optimized surface and the reference one in this study.

  • PDF

Self-consistent electronic structure of impurities using the recursion method

  • Park, Jin-Ho;Cho, Hwa-Suck;Lee, Gun-Woo
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제2권1호
    • /
    • pp.13-19
    • /
    • 1998
  • We have calculated the electronic structure of impurity atoms in metal host by using the tight binding model in the recursion method. For a self-consistent calculation, we assumed that the effect of impurity introduction was localized only at the impurity site and its neighbours. We calculated the Madelung term by limiting the contribution to Vm of the charge perturbations to the first shell around the impurity with Evjen technique. The calculated local density of states and charge transfer values have been compared with the experimental values for a single impurity in metal host. We fund that d-reso-nance state came from the repulsive interaction between impurity d-state and host band, and the position of d-resonance state depended on the difference of valence electrons between the host and the impurity. the results also showed that the charge transfer value between an impurity and host metal was comparable to the ionicity difference between them.

이차원 반도체 소재를 이용한 투명 태양전지 특성에 관한 연구 (Transparent Photovoltaic Device using Two-dimensional Transition-metal Dichalcogenides)

  • 좌태헌;현철민;김민식;이혁주;안지훈
    • 한국표면공학회지
    • /
    • 제49권2호
    • /
    • pp.186-190
    • /
    • 2016
  • In this study, we fabricated the transparent photovoltaic device using 2-dimensional transition-metal dichalcogenides and investigated the transparency and photovoltaic characteristics. P-n heterojunction was formed by mechanical exfoliation and aligned transfer method on the transparent sheet using n-type $MoS_2$ and p-type $WSe_2$. Our transparent photovoltaic device exhibited the open-circuit voltage of ~ 0.15 V and the short-circuit current of 0.48 nA under illumination of white light.

Development of multi-cell flows in the three-layered configuration of oxide layer and their influence on the reactor vessel heating

  • Bae, Ji-Won;Chung, Bum-Jin
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.996-1007
    • /
    • 2019
  • We investigated the influence of the aspect ratio (H/R) of the oxide layer on the reactor vessel heating in three-layer configuration. Based on the analogy between heat and mass transfers, we performed mass transfer experiments to achieve high Rayleigh numbers ranging from $6.70{\times}10^{10}$ to $7.84{\times}10^{12}$. Two-dimensional (2-D) semi-circular apparatuses having the internal heat source were used whose surfaces of top, bottom and side simulate the interfaces of the oxide layer with the light metal layer, the heavy metal layer, and the reactor vessel, respectively. Multi-cell flow pattern was identified when the H/R was reduced to 0.47 or less, which promoted the downward heat transfer from the oxide layer and possibly mitigated the focusing effect at the upper metallic layer. The top boundary condition greatly affected the natural convection of the oxide layer due to the presence of secondary flows underneath the cold light metal layer.

Effects of radiation-modulated cooling on the momentum transfer from stellar feedback

  • Na, Chongsam;Kimm, Taysun
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.70.2-70.2
    • /
    • 2019
  • Strong radiation fields can change the ionization state of metals and hence cooling rates. In order to understand their effects on the momentum transfer from radiation and supernova feedback, we perform a suite of radiation-hydrodynamic simulations with radiation-modulated metal cooling. For this purpose, we pre-tabulate the metal cooling rates for a variety of spectral shapes and flux levels with the spectral synthesis code, Cloudy, and accurately determine the rates based on the local radiation field strength. We find that the inclusion of the radiation-modulated metal cooling decreases the total radial momentum produced by photo-ionization heating by a factor of ~3 due to enhanced cooling at temperature T~10^3-4 K. The amount of momentum transferred from the subsequent SN explosions, however, turns out to be little affected by radiation, as the main cooling agents at T~10^5-6 K are only destroyed by soft X-ray radiation which is generally weak. We further discuss the total momentum budget in various conditions.

  • PDF

용탕주조법을 이용한 금속복합재료의 침투와 열전달 해석 (Numerical Analysis of Infiltration and Heat Transfer of Squeeze Casting for MMCs)

  • 안인혁;정창규;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.195-198
    • /
    • 2000
  • The process of squeeze casting for metal matrix composites (MMCs) has been simulated numerically by using finite difference method. The governing equations to describe fluid flow through porous medium and heat transfer are applied to two dimensional model which is similar to a real system. A computational code has been developed to solve this problem. The influence on infiltration kinetics and solidification time of several parameters is investigated. Cooling curves and temperature distribution with time and position is also shown. The result can be used to design the squeeze casting for MMCs.

  • PDF

미세기포 발생 산기장치 금형의 설계와 제작에 관한 연구 (A study on mold design for microscopic bubble-producing air diffusers and on mold manufacture)

  • 이은종;최계광;김세환
    • Design & Manufacturing
    • /
    • 제7권1호
    • /
    • pp.50-54
    • /
    • 2013
  • Sewage treatment plants are energy hogs. Among many, aeration systems account for 40-50 percent of the total energy use. To save energy, strengthening oxygen transfer characteristics is necessary. In order to do so, microscopic bubble-creating equipment is a prerequisite. This study focuses on microscopic bubble-producing air diffuser manufacture to save energy and enhance oxygen transfer.

  • PDF

아르곤 가스를 효율적으로 사용하기 위한 GMA 용접 토치 구조 Part 2 : AMAG와 DMAG 공정의 비교 (GMA Torch Configuration for Efficient Use of Argon Gas Part 2 : Comparison between AMAG DMAG Process)

  • 문명철;고성훈;유중돈
    • Journal of Welding and Joining
    • /
    • 제17권6호
    • /
    • pp.46-52
    • /
    • 1999
  • The auxiliary gas-shielded MAG (AMAG) process, which was devised to provide an argon-rich shielding environment using small amount of argon gas, was investigated experimentally to figure out its effects on metal transfer and weld quality. Proper conditions for the AMAG process including the argon gas ratio, position and direction of the auxiliary nozzle were determined experimentally. Performance of the AMAG process was compared with that of the double gas-shielded MAG(DMAG) and MAG processes by monitoring the bead profile, current and voltage waveforms. The AMAG process was found to provide better bead profile, more stable arc and wider operating range of spray transfer mode compared with the DMAG process. In general, performance of the AMAG process using the argon ratio of 30% was comparable to that of the MAG process using 80% argon and 20% CO₂ gas.

  • PDF

용적 내부의 유동에 의한 모멘텀을 고려한 GMA 용접의 입상용적 이행에 대한 해석 (Analysis of Globular Transfer Considering Momentum Induced by Flow Within Molten Drop in GMAW)

  • ;이승현;강문진;유중돈
    • Journal of Welding and Joining
    • /
    • 제26권4호
    • /
    • pp.61-65
    • /
    • 2008
  • The static force balance model (SFBM) has been used to analyze drop transfer in gas metal arc welding. Although the SFBM is capable of predicting the detaching drop size in the globular mode with reasonable accuracy, discrepancy between the calculated and experimental results increases with current. In order to reduce discrepancy, the SFBM is modified by considering the momentum of the molten metal flow, which is generated by the pinch pressure. The momentum increases with smaller drop size and becomes compatible to the electromagnetic force. The modified force balance model (MFBM) predicts the experimental results more accurately, and extends its application to the projected mode.