• Title/Summary/Keyword: Metal Sheet with Curvature

Search Result 24, Processing Time 0.031 seconds

An Effect of Process Parameters on the Generation of Sheet Metal Curvatures in the Incremental Roll Forming Process (점진적 롤 성형 공정에서 공정 변수가 박판 금속의 곡률 생성에 미치는 영향)

  • 윤석준;양동열
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.122-128
    • /
    • 2004
  • In order to make a doubly-curved sheet metal effectively, a sheet metal forming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation in thickness. The developed process is an unconstrained forming process with no holder. For this study, the experimental equipment is set up with the roll set which consists of two pairs of support rolls and one center roll. In the experiments using aluminum sheets, it is found that the curvature of the formed sheet metal is determined by controlling the distance between supporting rolls in pairs and the forming depth of the center roll and it also depends on the thickness of the sheet metal. In order to check the effect of process parameters on the generation of sheet metal curvatures in this process, the orthogonal array is adopted. From the experimental results, among the process parameters, the distance between supporting rolls in pairs along the direction of one principal radius of curvature as well as the forming depth and the thickness of the material is shown to influence the generation of curvature in the same direction significantly. That is, the other distance between supporting rolls in pairs which are not located in the same direction of one principal radius of curvature, does not have an significant effect on the generation of the curvature in that direction. It mainly affects the generation of curvature in its own direction with the forming depth and the thickness of the material.

An Effect of Process Parameters on the Generation of Sheet Metal Curvatures in the Incremental Roll Forming Process (점진적 롤 성형 공정에서 공정 변수가 박판 금속의 곡률 생성에 미치는 영향)

  • Yoon S. J.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.53-57
    • /
    • 2003
  • In order to make a doubly curved sheet metal effectively, a sheet metal farming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation to thickness. The developed process is an unconstrained forming process with no holder. For this study, the experimental equipment is set up with the roll set which consists of two pairs of support rolls and one center roll. In the experiments using aluminum sheets, it is found that the curvature of the formed sheet metal is determined by controlling the distance between supporting rolls in pairs and the forming depth of the center roll and it also depends on the thickness of the sheet metal. In order to check the effect of process parameters on the generation of sheet metal curvatures in this process, the orthogonal array is adopted. From the experimental results, among the process parameters, the distance between supporting rolls in pairs along the same direction of one principle radius of curvature as well as the forming depth and the thickness of the material is shown to influence the generation of curvature in the same direction significantly. That is, the other distance between supporting rolls in pairs which are not located in the same direction of one principle radius of curvature, does not have an significant effect on the generation of the curvature in that direction. It just affects the generation of curvature in its own direction mainly with the forming depth and the thickness of the material.

  • PDF

Shape Prediction of Flexibly-reconfigurable Roll Forming Using Regression Analysis (회귀분석을 활용한 비정형롤판재성형 공정의 형상 예측)

  • Park, J.W.;Yoon, J.S.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.25 no.3
    • /
    • pp.182-188
    • /
    • 2016
  • Flexibly-reconfigurable roll forming (FRRF) is a novel sheet metal forming technology conducive to producing multi-curvature surfaces by controlling the strain distribution along longitudinal direction. In FRRF, a sheet metal is shaped into the desired curvature by using reconfigurable rollers and gaps between the rollers. As FRRF technology and equipment are under development, a simulation model corresponding to the physical FRRF would aid in investigating how the shape of a sheet varies with input parameters. To facilitate the investigation, the current study exploits regression analysis to construct a predictive model for the longitudinal curvature of the sheet. Variables considered as input parameters are sheet compression ratio, radius of curvature in the transverse direction, and initial blank width. Samples were generated by a three-level, three-factor full factorial design, and both convex and saddle curvatures are represented by a quadratic regression model with two-factor interactions. The fitted quadratic equations were verified numerically with R-squared values and root mean square errors.

Development of a Forming Process using the Roll Set for the Manufacture of a Doubly Curved Sheet Metal (이중 곡률을 갖는 판재 성형을 위한 롤셋(Roll Set) 성형 공정 개발)

  • 윤석준;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.44-47
    • /
    • 2002
  • In order to make a doubly curved sheet metal effectively, a sheet metal forming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation to thickness. The developed process is an unconstrained forcing process with no holder. For this study, the experimental equipment is set up with the roll set which consists of two pairs of support rolls and one center roll. In the experiments using aluminum sheets and FEM simulation, it is found that the curvature of the formed sheet metal is determined by controlling the distance between supporting rolls in pairs and the forming depth of the center roll. The FEM simulation of the forming process using the roll set along the one path shows the distributions of the curvatures in two directions along the path, and gives information about the characteristics of the proposed forming process.

  • PDF

A Study on the Sheet Metal Forming and the Plastic Deformation Characteristic by Using PAM-STAMP (PAM-STAMP를 이용한 박판성형성 및 소성변형 특성에 관한 연구)

  • Kang, Dae-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.29-38
    • /
    • 1999
  • In this paper the forming simulation of circular bulge by using PAM-STAMP has been performed to estimate the sheet metal forning and the plastic deformation characteristic of circular bulge. The uniaxial tension tests adn bulge tests are carried out for studying the forming characteristics of materials, and also Moire experiment are carried out for measuring the radius of curvature of the bulge and the polar compressive thickness strain. In order to compare the simulation results with the experiment and Hills theory, the relationships between redius of curvature adn polar height of the bulge, between hydraulic pressure and polar height, and between polar compressive thickness strain and polar height, are used. According to this study, the results of simulation and Hills theory are good agreement to the experiment. So, the results of simulation by using PAM-STAMP and Hills theory will give engineers good information to assess the formagbility and plastic deformation characteristic of hydraulic circular bulge test.

  • PDF

Experimental Study on the Development of a Forming Process for Manufacturing Doubly-curved Sheet Metal (이중 곡률을 갖는 판재의 성형 공정의 개발에 대한 실험적 연구)

  • 양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.18-21
    • /
    • 1999
  • In this study in order to make doubly-curved sheet metal effectively a sheet metal forming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation to thickness The developed process is an unconstrained forming process with no holder. For this study the experimental equipment is set up with the punch-set which consists of two pairs of lower support-punches and one upper center-punch. In the experiments using aluminum sheet it is found that the curvature of the formed sheet metal is determined by controlling the distance between supporting punches in pairs and the forming depth of the center-punch. and the edge-forming method is proposed for forming the sheet metal into the balanced shape. The equation using process variables such as the distance between supporting punches in pairs and the forming depth of the center-punch is proposed for the prediction of the radii of curvatures of the formed shape and it is corrected by the experimental results and the FEM simulation results about whether springback takes place. It is found that according o the simulation there is a certain set of the distance between a pair of supporting punches and the forming depth of the center-punch which causes a little springback. It is thus shown that the radii of curvatures of the formed sheet metal can be predicated by the corrected equation unless significant springback occurs.

  • PDF

A Study on the Enhancement of Flatness for the Metal Sheet with Curvature (곡률을 가진 판재의 편평도 개선을 위한 인자 연구)

  • Woo, D.U.;Kim, J.Y.;Kim, J.H.;Lee, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.273-276
    • /
    • 2006
  • The focus of this study is on the enhancement of flatness for the shielded slot plate, one of main components of the MCFC stack. The shielded slot plate is to get curvature during manufacturing process since it is produced by forming operation from only one side of it. Therefore, a correction die is proposed to place just after the main die to apply unbending on the curved plate to get almost flat product. In the design for the correction die, four kinds of design factors are selected to study which factor is the most influencing one affecting the flatness of the plate. From the experimental results using Taguchi method, it has been revealed that the Young's modulus of urethane die is the most critical factor.

  • PDF

Analysis of Springback of Sheet Metal(II): Experimental Validation of Analytical Model (박판재의 스프링백 해석(II)-해석모델의 실험적 검증)

  • Lee, Jae-Ho;Kim, Dong-Woo;Sohn, Sung-Man;Lee, Mun-Yong;Moon, Young-Hoon
    • Transactions of Materials Processing
    • /
    • v.16 no.7
    • /
    • pp.516-520
    • /
    • 2007
  • As the springback of sheet metal during unloading nay cause deviation from a desired shape, accurate prediction of springback is essential for the design of sheet stamping operations. On the removal of the applied load the specimen loses its elastic strain by contracting around the contour of the block, the radius $\rho$ can be determined by the residual differential strain. Therefore in this study the springback estimated by the residual differential strain is experimentally validated through the comparison with those obtained by U-bending test. The springback characteristics of two analytical models are also estimated at various processing conditions such as thickness, curvature of radius and drawing strain. The model based on residual differential strain has an applied transition strain where the springback undergoes a dramatic decrease. Both models show that springback decreases with increased strip thickness and with decreased radius of curvature. For no applied tension, the model based on residual differential strain predicts more springback as compared to the moment based model.

Recent Development of Automated Strain Measurement System for Sheet Metal Parts (판재 변형률 자동측정시스템의 발전)

  • 김형종
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.129-133
    • /
    • 2000
  • It is reasonable to use the stereo vision and image processing technique to digitize 3D coordinates of grid points and to evaluate surface strains on a sheet metal parts. However this method has its intrinsic problems such as the difficulty in enhancement of bad images inevitable error due to digital image resolution of camera and frame grabber unreliability of strains and thickness evaluated from coarse grid on the corner area with large curvature and the limitation of the area that can be measured at a time. Therefore it is still hard to measure strain distribution over the entire surface of a medium,- or large-sized stamped part at a time even by using an automated strain measurement system. In this study the curvature correction algorithm based on the grid refinement and the geometry assembling algorithm based on the global error minimization (GEM) scheme are suggested. Several applications are presented to show the reliability and efficiency of these algorithms.

  • PDF