• Title/Summary/Keyword: Metal Panel

Search Result 304, Processing Time 0.031 seconds

Developments of Transparent ac-PDPs

  • Choi, Hak-Nyun;Lee, Seog-Young;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1621-1624
    • /
    • 2008
  • Transparent ac-PDP test panel was prepared via a combination of materials including ITO sustaining electrodes, thin film dielectric layer and nano-sized phosphor powders. The thin film dielectric layer was prepared by E-beam evaporation process and phosphor layer was deposited on metal mesh pattern by electrophoretic deposition process. The optical transmittance and luminance of the panel indicated that full color transparent ac-PDP is feasible with the approach.

  • PDF

Conducting Metal Oxide Interdigitated Electrodes for Semiconducting Metal Oxide Gas Sensors

  • Shim, Young-Seok;Moon, Hi-Gyu;Kim, Do-Hong;Jang, Ho-Won;Yoon, Young-Soo;Yoon, Soek-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.65-65
    • /
    • 2011
  • We report the application of conducting metal oxide electrodes for semiconducting metal oxide gas sensors. Pt interdigitated electrodes have been commonly used for metal oxide gas sensor because of the low resistivity, excellent thermal and chemical stability of Pt. However, the high cost of Pt is an obstacle for the wide use of metal oxide gas sensors compared with its counterpart electrochemical gas sensors. Meanwhile, relatively low-cost conducting metal oxides are widely being used for light-emitting diodes, flat panel displays, solar cell and etc. In this work, we have fabricated $WO_3$ and $SnO_2$ thin film gas sensors using interdigitated electrodes of conducting metal oxides. Thin film gas sensors based on conducting metal oxides exhibited superior gas sensing properties than those using Pt interdigitated electrodes. The result was attributed to the low contact resistance between the conducting metal oxide and the sensing material. Consequently, we demonstrated the feasibility of conducting metal oxide interdigitated electrodes for novel gas sensors.

  • PDF

The Low Cycle Fatigue behavior of Laser Welded Sheet Metal (박판형 레이저 용접재의 저주기 피로 특성)

  • 김웅찬;곽대순;김석환;오택열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1025-1028
    • /
    • 2004
  • In this paper, we studied low cycle fatigue behavior of laser welded sheet metal that used automobile body panel. Specimens were manufactured as weld condition and sheet metal using automobile manufacturing company at present. For to know mechanical properties, micro Vicker's hardness test was performed of specimens. But, we can't confirm mechanical properties of weld bead and heat affected zone because laser weld makes very narrow weld bead and heat affected zone than other welding method. Therefore, we performed low cycle fatigue test with similar weldment, dissimilar weldment, similar thickness and dissimilar weldment, and dissimilar thickness and dissimilar weldment for fatigue properties of thickness and welding direction. As well, we analysis stress distribution of base metal, weld bead, and heat affected zone according to strain load using finite element method.

  • PDF

Formation of Metal Mesh Electrodes via Laser Plasmonic Annealing of Metal Nanoparticles for Application in Flexible Touch Sensors (금속 나노 파티클의 레이저 플라즈모닉 어닐링을 통한 메탈메쉬 전극 형성과 이를 활용한 유연 터치 센서)

  • Seongmin Jeong;Yun Sik Hwang;Yu Mi Woo;Yong Jun Cho;Chan Hyeok Kim;Min Gi An;Ho Seok Seo;Chan Hyeon Yang;Kwi-Il Park;Jung Hwan Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.223-229
    • /
    • 2024
  • Laser-induced plasmonic sintering of metal nanoparticles (NPs) holds significant promise as a technology for producing flexible conducting electrodes. This method offers immediate, straightforward, and scalable manufacturing approaches, eliminating the need for expensive facilities and intricate processes. Nevertheless, the metal NPs come at a high cost due to the intricate synthesis procedures required to ensure long-term reliability in terms of chemical stability and the prevention of NP aggregation. Herein, we induced the self-generation of metal nanoparticles from Ag organometallic ink, and fabricated highly conductive electrodes on flexible substrates through laser-assisted plasmonic annealing. To demonstrate the practicality of the fabricated flexible electrode, it was configured in a mesh pattern, realizing multi-touchable flexible touch screen panel.

The survival rate, respiration and heavy metal accumulation of abalone (Haliotis discus hannai) rearing in the different copper alloy composition (동합금 조성에 따른 북방전복 (Haliotis discus hannai)의 생존, 호흡 및 중금속 축적률)

  • Shin, Yun-Kyung;Jun, Je-Cheon;Myeong, Jeong-In;Yang, Sung-Jin
    • The Korean Journal of Malacology
    • /
    • v.30 no.4
    • /
    • pp.353-361
    • /
    • 2014
  • In order to investigate the effects of copper alloy on abalone physiology, we studied survival rate, respiration, excretion rate, and heavy metal accumulation in each organ of adults and spats. The survival rate of spats and adults showed 27-60% and 63-83% respectively, higher survival rate in adults. In particular, 100% of copper panel led to lowest survival rate and there was no sharp distinction according to copper alloy composition. The respiration rate and excretion rate of ammonia nitrogen was $1.81mgO_2/g$ D.W./h and 0.43 mg $NH_4-N/g$ D.W./h respectively at 100% of copper panel. In other words, there was a high significant difference at the level, but no significant difference at other test levels (P < 0.05). The atomic ratio (0: N) hit the lowest at the 100% of copper panel showing 3.79 and no significant differences were seen among other test groups with 6.57-7.18 of a very low range. This means that the species might have undergone nutritional stress. In case of copper accumulation, the 100% copper panel group showed the highest level in hepatopancreas and muscle showing 6.91 mg/kg and 1.60 mg/kg respectively but the rest of groups showed similar levels. Zinc accumulation raised at Cu-Zn alloy panel had high significance showing 18.50 mg/kg and 1.10 mg/kg in hepatopancreas and muscle respectively (P < 0.05). To sum up, a cage net made of 100% pure copper is expected to have a negative effect on abalone in light of survival rate, heavy metal accumulation, and atomic ratio (0: N). Moreover, given that the substratum used for the high adhesive species and nutritious stress that is represented through the atomic ratio need to be considered, the copper alloy net is thought not to be suitable for abalone aquaculture.

Design of an 8-bit 230MSPS Analog Flat Panel Interface for TFT-LCD Driver (TFT-LCD 드라이버를 위한 8-bit 230MSPS Analog Flat Panel InterFACE의 설계)

  • Yun, Seong-Uk;Im, Hyeon-Sik;Song, Min-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.2
    • /
    • pp.1-6
    • /
    • 2002
  • In this paper, an Analog Flat Panel interface(AFPI) which supports for UXGa(Ultar extended Graphics Array)-Compatible TFT LCD Driver is designed. The Proposed AFPI is composed of 8-b ADC, Automatic Gain Control(AGC), Low-Jitter PLL. In order to obtain a high speed and low power consumption, an efficient architecture of 8-bit ADC is proposed, whose FR(Folding Rate) is 8, NFB(Number of Folding Block) is 2, and IR (Interpolating Rate) is 16. We can get high SNDR by adopting distributed track and hold circuits. Also a programmable AGC which is possible to control gain and clamp, and a low-jitter PLL are proposed. The chip has been fabricated with 0.25${\mu}{\textrm}{m}$ 1-poly S-metal n-well CMOS technology. The effective chip area is 3.6mm $\times$ 3.2mm and it dissipates about 602㎽ at 2.5V power supply. The INL and DNL are within $\pm$ 1LSB. The measured SNDR is about 43㏈, when the input frequency is 10MHz at 200MHz clock frequency.

Dynamic Explicit Elastic-Plastic Finite Element Analysis of Large Auto-body Panel Stamping Process (대형 차체판넬 스템핑공정에서의 동적 외연적 탄소성 유한요소해석)

  • 정동원;김귀식;양동열
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.10-22
    • /
    • 1998
  • In the present work the elastic-plastic FE formulations using dynamic explicit time integration schemes are used for numerical analysis of a large auto-body panel stamping processes. For analyses of more complex cases with larger and more refined meshes, the explicit method is more time effective than implicit method, and has no convergency problem and has the robust nature of contact and friction algorithms while implicit method is widely used because of excellent accuracy and reliability. The elastic-plastic scheme is more reliable and rigorous while the rigid-plastic scheme require small computation time. In finite element simulation of auto-body panel stamping processes, the roobustness and stability of computation are important requirements since the computation time and convergency become major points of consideration besides the solution accuracy due to the complexity of geometry conditions. The performnce of the dynamic explicit algorithms are investigated by comparing the simulation results of formaing of complicate shaped autobody parts, such as a fuel tank and a rear hinge, with the experimental results. It has been shown that the proposed dynamic explicit elastic-plastic finite element method enables an effective computation for complicated auto-body panel stamping processes.

  • PDF

Temperature sensor without reference resistor by indium tin oxide and molybdenum (인듐틴옥사이드와 몰리브데늄을 이용한 외부 기준 저항이 필요 없는 온도센서)

  • Jeon, Ho-Sik;Bae, Byung-Seong
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.483-489
    • /
    • 2010
  • Display quality depends on panel temperatures. To compensate it, temperature sensor was integrated on the panel. The conventional temperature sensor integrated on the panel needs external reference resistor. Since the resistance of external resistor can vary according to the variation of the environment temperature, the conventional temperature sensor can make error in temperature sensing. The environmental temperatures can change by the back light unit, driving circuits or chips. In this paper, we proposed a integrated temperature sensor on display panel which does not need external reference resister. Instead of external reference resistor, we used two materials which have different temperature coefficient in resistivity. They are connected serially and the output voltage was measured at the point of connection with the applied voltage to both ends. The proposed sensor was fabricated with indium tin oxide(ITO), and Mo metal electrode temperature sensor which were connected serially. We verified the temperature senor by the measurements of sensitivity, lineality, hysteresis, repeatability, stability, and accuracy.

Design of Moir${\acute{e}}$- and Starburst-Free Metal Meshes for Touch Screen Panels (모아레, 스타버스트 현상이 없는 터치스크린 패널용 메탈 메쉬 설계)

  • Shin, Dong-Kyun;Park, Jong-Woon;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.83-90
    • /
    • 2014
  • Using a ray tracing simulation, we have investigated the moir${\acute{e}}$ and starburst phenomena of touch screen panels (TSPs) based on opaque metallic grids (square, hexagonal, and random grids). It is demonstrated that employing a random metal mesh is the most effective way to suppress the moir${\acute{e}}$ and starburst phenomena at the same time. At high crossing angles between metal mesh of TSPs and black matrix (BM) of displays, however, a random metal mesh brings in stronger moir${\acute{e}}$ phenomenon than a square metal mesh due to point defects. Though the square metal mesh suppresses the moir${\acute{e}}$ effect substantially at high crossing angles, yet it results in the strongest starburst patterns. We have also provided the simulation scheme that can capture the moir${\acute{e}}$ and starburst patterns observed experimentally and useful design guidelines for metal grids.

Experiment and bearing capacity analyses of dual-lintel column joints in Chinese traditional style buildings

  • Xue, Jianyang;Ma, Linlin;Wu, Zhanjing;Zhai, Lei;Zhang, Xin
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.641-653
    • /
    • 2018
  • This paper presents experiment and bearing capacity analyses of steel dual-lintel column (SDC) joints in Chinese traditional style buildings. Two SDC interior joints and two SDC exterior joints, which consisted of dual box-section lintels, circular column and square column, were designed and tested under low cyclic loading. The force transferring mechanisms at the panel zone of SDC joints were proposed. And also, the load-strain curves at the panel zone, failure modes, hysteretic loops and skeleton curves of the joints were analyzed. It is shown that the typical failure modes of the joints are shear buckling at bottom panel zone, bending failure at middle panel zone, welds fracturing at the panel zone, and tension failure of base metal in the heat-affected zone of the joints. The ultimate bearing capacity of SDC joints appears to decrease with the increment of axial compression ratio. However, the bearing capacities of exterior joints are lower than those of interior joints at the same axial compression ratio. In order to predict the formulas of the bending capacity at the middle panel zone and the shear capacity at the bottom panel zone, the calculation model and the stress state of the element at the panel zone of SDC joints were studied. As the calculated values showed good agreements with the test results, the proposed formulas can be reliably applied to the analysis and design of SDC joints in Chinese traditional style buildings.