• 제목/요약/키워드: Metal Ion Resistance

검색결과 119건 처리시간 0.027초

총의치와 국소의치 금속의치상용 코발트-크롬 합금과 금속소부도재관용 코발트-크롬 합금의 부식저항성 평가 (Corrosion Resistance Evaluation in the Co-Cr Alloys for the Full and Removable Partial Denture Metal Frameworks and the Porcelain-fused-to-metal Crown)

  • 박수철;최성미;강지훈
    • 대한치과기공학회지
    • /
    • 제34권3호
    • /
    • pp.237-245
    • /
    • 2012
  • Purpose: This study was conducted to evaluate the corrosion resistance of metal ions of alloys and use the results as the dental health data. These were performed by examining the corrosion levels of Co-Cr alloys for the full and removable partial denture metal frameworks and porcelain-fused-to-metal crown, among the dental casting nonprecious alloys. Methods: The alloy specimens (N = 10) were manufactured in $15mm{\times}10mm{\times}1.2mm$ and stored in two types of corrosive solutions at $37^{\circ}C$ for seven days. The metal ions were quantitatively analyzed using the Inductively Coupled Plasma-Atomic Emission Spectrometer. Results: Of the three Co-Cr alloys, the Co ion concentration of the porcelain-fused-to-metal alloy was 1.512 ${\mu}g/cm^2$, which indicated the highest metal ion dissolution. The metal corrosion was higher in the more acidic pH 2.2 solution compared with the pH 4.4 solution. In all three Co-Cr alloys, Co ion dissolution was predominant in the two corrosive solutions. Conclusion: The corrosion resistance of the three Co-Cr alloys was high, indicating a good biocompatibility.

질소이온 주입이 생체적합성 티타늄 임플란트의 마모특성에 미치는 영향 (Effect of Nitrogen Ion Implantation on Wear Behavior of Biocompatible Ti Implant)

  • 변응선;김동수;이구현;정용수
    • 연구논문집
    • /
    • 통권30호
    • /
    • pp.137-145
    • /
    • 2000
  • Since the concept of osseointegration was introduced, titanium and titanium-based alloy materials have been increasingly used for bone-anchored metal in oralmaxillofacial and orthopedic reconstruction. Successful osseointegration has been attributed to biocompatibility and surface condition of metal implant among other factors. Although titanium and titanium alloys have an excellent over the metal ion release and biocompatibility, considerable controversy has developed over the metal ion and wear debris in vivo and vitro. In this study, nitrogen ion implantation technique was used to improve the corrosion resistance and wear property of titanium materials, ultimately to enhance the tissue reaction to titanium implants As ion implantation energy was increased, projected range of nitrogen ion the Ti substrate was gradually increased. Under condition of constant ion energy. atomic concentration of nitrogen was also increased with ion doses. The friction in Hank's solution was increased with ion doses. The friction coefficient of ion implanted specimens in HanK's solution was increased from 0.39, 0.47 to 0.52, 0.65 respectively under high energy and ion dose conditions. As increasing ion energies and ion dose, amount of wear was reduced.

  • PDF

contact 이온주입과 Metal 증착이 다결정 실리콘저항의 면저항에 미치는 영향 (The Effect of Sheet Resistance of Polysilicon Resistor with Contact Implantation and Metal Deposition)

  • 박중태;최민성;이문기;김봉렬
    • 대한전자공학회논문지
    • /
    • 제24권6호
    • /
    • pp.969-974
    • /
    • 1987
  • High value sheet resistance (Rs, 350 \ulcorner/ -80 K \ulcorner/ ) borom implanted polysilicon resistors were fabricated under process condition compatible with bipolar integrated circuits fabrication. This paper includes the effect of contact ion implantation on Rs and the effect of electron gun(e-gun) deosition vs. non e-gun evaporated metal contacts on the Rs. From results, we observed that the contact ion implanted samples showed higher Rs value than those without contact ion implantation. Also, it was shown that there is noticeable amount of Rs degradation for e-gun samples, while sputtered samples expressed little Rs degradation after PtSi was formed.

  • PDF

On eliminating electrochemical impedance signal noise using Li metal in a non-aqueous electrolyte for Li ion secondary batteries

  • Park, Chul-Wan
    • Carbon letters
    • /
    • 제12권3호
    • /
    • pp.180-183
    • /
    • 2011
  • Li metal is accepted as a good counter electrode for electrochemical impedance spectroscopy (EIS) as the active material in Li-ion and Li-ion polymer batteries. We examined the existence of signal noise from a Li-metal counter quantitatively as a preliminary study. We suggest an electrochemical cell with one switchable electrode to obtain the exact impedance signal of active materials. To verify the effectiveness of the switchable electrode, EIS measurements of the solid electrolyte interphase (SEI) before severe $Li^+$ intercalation to SFG6 graphite (at > ca. 0.25 V vs. Li/$Li^+$) were taken. As a result, the EIS spectra without the signal of Li metal were obtained and analyzed successfully for the following parameters i) $Li^+$ conduction in the electrolyte, ii) the geometric resistance and constant phase element of the electrode (insensitive to the voltage), iii) the interfacial behavior of the SEI related to the $Li^+$ transfer and residence throughout the near-surface (sensitive to voltage), and iv) the term reflecting the differential limiting capacitance of $Li^+$ in the graphite lattice.

이중 결정립 구조 1%Si-Al 금속선에 의한 Migration 수명의 개선 (Improvement of Migration Lifetime by Dual-sized Grain Structure in 1% Si-Al Metal Line)

  • 김영철;김철주
    • 전자공학회논문지A
    • /
    • 제30A권6호
    • /
    • pp.1-7
    • /
    • 1993
  • After the 1%S-Al metal is deposited, a thin oxide is formed thereon. Then, a single charged Argon(Ar$^{+}$) is ion implanted into the oxide layer, thereby causing the metal grain in the upper surface of the metal layer to become amorphous. Consequently, the grain size will be reduced and the rough surface of the metal layer flattened. However, the remainder of the metal layer beneath the upper surface thereof will still exhibit large grain size and low resistance, because the Argon ion is only implanted to characterized by a dual-sized grain structure which served to reduce interlayer stress, thereby decreasing the rate of stress migration, and to lower the resistivity of the metal line, thereby enhancing the electromigration characteristic thereof. Experiments have shown that the metal line exhibits a metal migration rate which is approximately 700% less than the control group and a standard deviation which is approximately 200% less than these group.p.

  • PDF

METAL ION RESISTANCE OF THE BACTERIOCIN PRODUCING ENTEROCOCCI

  • Laukova, A.;Kmet, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제6권3호
    • /
    • pp.441-445
    • /
    • 1993
  • Ten bacteriocin-producing Enterococcus faecium strains with urease activity ($1.10-6.2nkat.mL^{-1}$) were isolated from the rumen of 2-8 weeks old calves. All strains were resistant aginst disodium arsenate at a minimal inhibition concentration - MIC $5g.L^{-1}$ and mercury chloride ($MIC=10-20mg.L^{-1}$). Eight strains were resistant against silver nitrate ($MIC=40-50mg.L^{-1}$) and three against antibiotics used. The resistance against six antibiotics was found in A23 strain. Values of adherence index ranged from 5.02 to 20.4 enterococci adhered per one epithelial cell of rumen wall. All isolates produced bacteriocins which inhibited the growth at least of one of five indicator organisms. The EF1 strain with a good affinity to the epithelial cell ($15.2{\pm}1.2$) produced bacteriocin substance with antimicrobial activity against grampositive and gramnegative indicator bacteria.

이온주입 제어에 의한 재료특성 개선에 관한 연구 (A Study on Improvement of Material Characteristics by Control of Ion Implantation)

  • 양영준;이치우;후지타 카즈히사
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권8호
    • /
    • pp.1178-1184
    • /
    • 2008
  • In this study, techniques of ion implantation were used in order to improve the characteristics of metal materials such as the oxidation and wear resistant. In particular it is necessary to develope their oxidation and wear resistant that could be used in severe environmental conditions. There are mainly two elementary technologies including ion implantation and/or thin film coating. Ion implantation method was performed for surface modification. As a result, it was found that some ion implantations methods such as Nb, high-temperature Nb ion implantation and Nb+C combined implantation are somewhat effective for improving the oxidation resistance of TiAl alloy. Furthermore, the fluorine PBII treatment is more effective for improving the oxidation resistance of the TiAl alloy with three-dimensional shapes. The implantation of boron ion into thin film of TiN was also effective for improving the properties of materials like high temperature wear resistance. TiCrN film was applied to the actual seal ring for steam turbines, and it was observed that its sliding property showed a successfully good performance.

도장 알루미늄 합금판의 성능에 미치는 인산염피막의 영향 (Effects of phosphate coating on some performance of painted Al alloy sheet)

  • 이규환;노병호
    • 한국표면공학회지
    • /
    • 제28권5호
    • /
    • pp.289-299
    • /
    • 1995
  • The effects of phosphate coating have been studied on physical properties and corrosion resistance of painted aluminum alloy sheet for automobile body. The physical properties (surface roughness, paint adhesion, impact resistance and pencil hardness) and corrosion resistance(cyclic corrosion and filiform corrosion) were investigated. Phosphate coatings enhanced the physical properties of painted Al alloy sheet, especially paint adhesion after the 240hours water immersion test. Phosphate coating also markedly improved the resistance for cyclic corrosion and filiform corrosion of painted cold rolled steel and Zn-Ni plated steel sheet as well as painted Al alloy sheet. The corrosion resistance of painted Al sheets was varied with the concentration of free fluoride ion and metal additives like Ni and Mn in the phosphating bath. A maximum corrosion resistance was obtained at about 300ppm of fluoride ion and additives of Ni and Mn obviously increased the corrosion resistance of painted specimens.

  • PDF

Linear Ion Source에 의해 증착된 Diamond-Like Carbon(DLC) 박막의 질화층 형성에 따른 밀착력 특성 연구 (Study on the Adhesion of Diamond Like Carbon Films Using the Linear Ion Source with Nitriding Layers)

  • 신창석;박민석;권아람;김승진;정원섭
    • 한국표면공학회지
    • /
    • 제44권5호
    • /
    • pp.190-195
    • /
    • 2011
  • Diamond-like carbon (DLC) has many outstanding properties such as low friction, high wear resistance and corrosion resistance. However, it is difficult to achieve enough adhesion on the metal substrates because of weak bonding between DLC film and the metal substrate. The purpose of this study is to enhance an adhesion of DLC film. For improving adhesion, the substrate was treated by active screen plasma nitriding before DLC film deposing. Nitrided substrates were investigated by Glow Discharge Spectrometer (GDS), Micro-Vickers Hardness. DLC films were deposited on several metals by linear ion source, and characteristics of the films were investigated using nano-indentation, Field Emission Scanning Electron Microscope (FESEM). The adhesion was measured by scratch tester. The adhesion of DLC films was increased when nitriding layer was formed before DLC deposition. Therefore, the adhesion of DLC film can be enhanced as increasing the hardness of materials.

Fabrication of metal nano-wires using carbon nanotube masks

  • Yun, W.S.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.175-175
    • /
    • 1999
  • Circumventing problems lying in the conventional lithographic techniques, we devised a new method for the fabrication of nanometer scale metal wires inspired by the unique characteristics of carbon nanotubes (CNTs). Since carbon nanotubes could act as masks when CNT-coated thin Au/Ti layer on a SiO2 surface was physically etched by low energy argon ion bombardment 9ion milling), Au/Ti nano-wires were successfully formed just below the CNTs exactly duplicating their lateral shapes. Cross-sectional analysis by transmission electron microscopy revealed that the edge of the metal wire was very sharply developed indicating the great difference in the milling rates between the CNTs and the metal layer as well as the good directionality of the ion milling. We could easily find a few nanometer-wide Au/Ti wires among the wires of various width. After the formation of nano-wires, the CNTs could be pushed away from the metal nano-wire by atomic force microscopy, The lateral force for the removal of the CNTs are dependent upon the width and shape of the wires. Resistance of the metal nano-wires without the CNTs was also measured through the micro-contacts definted by electron beam lithography. since this CNT-based lithographic technique is, in principle, applicable to any kinds of materials, it can be very useful in exploring the fields of nano-science and technology, especially when it is combines with the CNT manipulation techniques.

  • PDF