• 제목/요약/키워드: Metal Injection Molding

검색결과 172건 처리시간 0.028초

사출성형 CAE를 이용한 세탁기용 Base 성형용 금형의 유동 시스템 최적화 (Optimization of feed system of base mold for washing machine using CAE)

  • 유민지;김경아;한성렬
    • Design & Manufacturing
    • /
    • 제15권1호
    • /
    • pp.1-7
    • /
    • 2021
  • The position of the gate is one of the important factors for optimal injection molding. This is because inappropriate gate positions cannot fill the cavity uniformly, which can lead to defects such as contraction. In this study, CAE was performed on hot runner injection molding of the washing machine base and plasticity was compared by changing gate position from existing gate position. A total of two alternatives have been applied to compare the plasticity of the washing machine base according to its optimal gate position. The gate position of the improved molds and the gate position of the current mold is analyzed by injection molding analysis. The results of the fill time, the pressure at V/P switchover, clamping force, and deflection were compared. In washing machine base injection molding, the deflection was reduced by about 3.76% in the improved mold 2. In improved mold 1, the fill time during injection molding was reduced by 3.32% to enable uniform charging, and the clamping force was reduced by 31.24%. We have confirmed that the position of the gate can change the charging pressure and the clamping force and affect the quality and cost savings of the molded product.

액체생검용 Lab-on-a-Disc의 평탄도 향상을 위한 최적화 (Design Optimization to achieve an enhanced flatness of a Lab-on-a-Disc for liquid biopsy)

  • 홍석관;이정원;황택용;이성훈;김경태;강태곤;황철진
    • Design & Manufacturing
    • /
    • 제17권1호
    • /
    • pp.20-26
    • /
    • 2023
  • Lab-on-a-disc is a circular disc shape of cartridge that can be used for blood-based liquid biopsy to diagnose an early stage of cancer. Currently, liquid biopsies are regarded as a time-consuming process, and require sophisticated skills to precisely separate cell-free DNA (cfDNA) and circulating tumor cells (CTCs) floating in the bloodstream for accurate diagnosis. However, by applying the lab-on-a-disc to liquid biopsy, the entire process can be operated automatically. To do so, the lab-on-a-disc should be designed to prevent blood leakage during the centrifugation, transport, and dilution of blood inside the lab-on-a-disc in the process of liquid biopsy. In this study, the main components of lab-on-a-disc for liquid biopsy are fabricated by injection molding for mass production, and ultrasonic welding is employed to ensure the bonding strength between the components. To guarantee accurate ultrasonic welding, the flatness of the components is optimized numerically by using the response surface methodology with four main injection molding processing parameters, including the mold & resin temperatures, the injection speed, and the packing pressure. The 27 times finite element analyses using Moldflow® reveal that the injection time and the packing pressure are the critical factors affecting the flatness of the components with an optimal set of values for all four processing parameters. To further improve the flatness of the lab-on-a-disc components for stable mass production, a quarter-disc shape of lab-on-a-disc with a radius of 75 mm is used instead of a full circular shape of the disc, and this significantly decreases the standard deviation of flatness to 30% due to the reduced overall length of the injection molded components by one-half. Moreover, it is also beneficial to use a quarter disc shape to manage the deviation of flatness under 3 sigma limits.

  • PDF

금속분말사출성형공법을 이용한 가솔린 터보차저의 웨이스트 게이트 밸브 어셈블리 열 충격 내구 시험 (Thermal Shock Durability Test of a Gasoline Turbocharger Waste Gate Valve Assembly Manufactured by a Metal Injection Molding)

  • 남충우;한만배;천봉수;신재식;김종하;민두식
    • 한국기계가공학회지
    • /
    • 제13권4호
    • /
    • pp.69-74
    • /
    • 2014
  • A waste gate valve (WGV) assembly for a gasoline turbocharger is typically manufactured by means of precision casting. In this study, however, it was newly manufactured in a more innovative way, metal injection molding (MIM) using Inconel 713C alloy, and its performance was tested in a 1.6L direct injection gasoline engine by a thermal shock durability test that lasted 300 hours, after which the results were compared to those of a precision-cast WGV assembly with regard to the engine intake boost pressure, turbine wheel speed, and transient intake pressure. It was found that the two WGV assemblies showed similar performance levels throughout the durability test.

PEI계 복합 재료를 이용한 탄자 운반체의 사출 성형 기술 개발에 관한 연구 (Development of Injection Moulding Method of Sabot using Polyetherimide Composite Material)

  • 정태형;이범재;하영욱;이성계
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.269-274
    • /
    • 2001
  • This research covers the development of new technique for composite injection molding of high stiffness Sabot. An analysis of polymer resin is performed by means of making test specimen mold and doing test with accordance of ASTM test guidelines. Structural analysis and simulation of injection molding process are carried out in order not only to estimate but also to predict the characteristics of molding stresses what both product and structure of mold may have. For structural analysis software, Moldflow and LS-dyna are used and universal test machine is utilized for evaluating performance of sabot. Cases of adopting this material to sabot are not announced yet in domestic academic world. In addition to that, materials for polymer-metal mixed injection molding are imported on the whole due to deficient level of domestic technology. Therefore, this new developed injection molding technique using PEI material can make it available to ensure the technology of making mold, injection and design. Finally, this technique may be applicable to another sabot having different radius of warheads from now on.

  • PDF

Computer Aided Engineering Design of Power Injection Molding Process for Dental Scaler Top Mold Design

  • Hwang, C.J.;Ko, Y.B.;Park, H.P.;Chung, S.T.;Rhee, B.O.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.497-498
    • /
    • 2006
  • Powder Injection Molding (PIM) has recently been recognized as an advanced manufacturing technology for low-cost mass production of metal or ceramic parts of complicated geometry. With this regards, design technology of dental scaler tip PIM mold, which has complex shape, with the help of computer-aided analysis for powder injection molding process was developed. Compter aided analysis results, such as filling pattern, weldline formation, and air vent position prediction were investigated and eventually showed good agreements with experimental results.

  • PDF

사출성형 CAE와 머신러닝을 이용한 스파이럴 성형품의 중량 예측 (Prediction of Weight of Spiral Molding Using Injection Molding Analysis and Machine Learning)

  • 김범수;한성열
    • Design & Manufacturing
    • /
    • 제17권1호
    • /
    • pp.27-32
    • /
    • 2023
  • In this paper, we intend to predict the mass of the spiral using CAE and machine learning. First, We generated 125 data for the experiment through a complete factor design of 3 factors and 5 levels. Next, the data were derived by performing a molding analysis through CAE, and the machine learning process was performed using a machine learning tool. To select the optimal model among the models learned using the learning data, accuracy was evaluated using RMSE. The evaluation results confirmed that the Support Vector Machine had a good predictive performance. To evaluate the predictive performance of the predictive model, We randomly generated 10 non-overlapping data within the existing injection molding condition level. We compared the CAE and support vector machine results by applying random data. As a result, good performance was confirmed with a MAPE value of 0.48%.

  • PDF

열가소성 직물탄소복합소재 사출 성형품의 표면 함침 개선에 관한 연구 (A study on the improvement of impregnation on the surface of injection-molded thermoplastic woven carbon fabric composite)

  • 정의철;윤경환;이성희
    • Design & Manufacturing
    • /
    • 제15권3호
    • /
    • pp.39-44
    • /
    • 2021
  • In molding of continuous fiber-reinforced thermoplastic composites, it is very difficult to impregnate between the reinforcements and the matrix since the matrix has a high melting temperature and high viscosity. Therefore, most of composite molding processes are divided in the manufacturing processes of intermediate materials called prepreg and the forming of products from intermediate materials. The divided process requires additional facilities and thermoforming, and they increase the cycle time and cost of composite products. These problems can be resolved by combining the continuous fiber-reinforced composite molding process with injection molding. However, when a composite material is manufactured by inserting woven fabric into the injection mold, poor impregnation occurs on the surface of the molded product. It affects the properties of the composites. In this paper, through an impregnation experiment using cores with different heat transfer rates and pore densities, the reason for the poor impregnation was confirmed, and molding experiments were conducted to produce composite with improved surface impregnation by inserting the mesh. And also, the surface impregnation and deformation of composites molded using different types of mesh were compared with each other.

고속 냉각 특성을 가진 사출성형 금형 코어 제작 및 사출 성형 (Fabrication of Cores for the Injection Mould with a High Cooling Rate and Injection Molding Using the Fabricated Core)

  • 안동규
    • 소성∙가공
    • /
    • 제16권7호
    • /
    • pp.549-554
    • /
    • 2007
  • The objective of this paper is to investigate into the fabrication technology of cores for the injection mould with three-dimensional conformal cooling channels to reduce the cooling time. The location of the conformal cooling channels has been determined through the injection molding analysis. The mould has been manufactured from a hybrid rapid tooling technology, which is combined a direct metal rapid tooling with a machining process. Several injection molding experiments have been performed to examine the productivity and the validity of the designed mould. From the results of the experiments, it has been shown that the proposed mould can mold a final product within a cooling time of 3 seconds and a cycle time of 21 seconds, respectively.

고정밀 신관 부품의 MIM 공정에 관한 연구 (A Research on the MIM Process of High-Precision Fuze Parts)

  • 서정화;강경훈
    • 한국군사과학기술학회지
    • /
    • 제15권3호
    • /
    • pp.231-240
    • /
    • 2012
  • During the past two decades, Metal Injection Molding(MIM) has become a very competitive technology to fabricate small, precise and complex-shaped parts in large quantities. In this research, the applicability of MIM technology in the mass-production of the high precision fuze parts to save manufacturing cost was investigated. The water-atomized 17-4PH stainless steel powder, one of the best corrosion-resistant high strength materials, was injection-molded into real-shape fuze part and flat tensile specimens. The injection-molded parts were thermally debound in hydrogen gas flow without solvent extraction. Sintering of the debound parts was carried out in vacuum at temperatures ranging from $1150^{\circ}C$ to $1370^{\circ}C$. The sintering behavior, mechanical properties, dimensional precision, corrosion resistance of the MIMed 17-4PH stainless parts were investigated. It was found that almost all the properties of the MIMed parts were comparable to those of the mechanically machined parts. Also, actual military field tests using both MIMed and mechanically machined fuze parts were performed as well and were found to be very successful.